

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Basics of Vacuum Technology

Unit: $Pa = N/m^2 = J/m^3$

Unit		Pa or N/m ²
bar		10 ⁵
mbar		100
atm	= 760 torr	1.01325 x 10 ⁵

Three states of residual gas

•d = typical distance between walls

• $<\lambda>$ = average collision distance

Viscous state: $<\lambda > < d/100$

•Collisions, energy transfer through collisions, viscous flow, diffusion

Intermediate state: $d/100 < <\lambda > < d$

Molecular state: $d < <\lambda >$

•Molecules collide with the walls, heat transfer from wall to wall with molecules, no viscosity

Vacuum regions

Vacuum region	Pa
Rough	$10^5 - 10^2$
Intermediate	$10^2 - 10^{-1}$
High	$10^{-1} - 10^{-4}$
Good high	$10^{-4} - 10^{-7}$
Ultra	$10^{-7} - 10^{-10}$
Good ultra	10-10 -

Vacuum region

Rough	Viscous
Intermediate	Changing to molecular
High	Mainly molecular
Good high	Molecular
	Materials, tightness, baking (150 – 400 °C)
Ultra	Surfaces stay clean
	Materials critical, metal seals, baking

Good ultra

Residual gas

- •Initially air
- •Rough vacuum: mainly air
- •Intermediate vacuum: gas starts to get out from surfaces (outgassing)
- •High vacuum: Mainly gases from surfaces, typically 70 90 % water Gradually water decreases and CO + CO₂ increase
- •Ultra vacuum: mainly Hydrogen
- •Depends on Pump/pre-pump: most pumps pump easier heavy gases
- •Nobel gases difficult to pump
- •Principally residual gas is NOT thin air

Note!

The composition of residual gas depends on

- •how long time the vessel has been open
- •how it was vented
- •what molecules can have attached on the surface (e.g. humidity -> water)
- •possible leaks
- •Etc.

Vacuum forces
$$F = P \cdot A$$

Practically "zero" pressure on the vacuum side and 1 atm on the pressure side.

•e.g. 10 cm x 10 cm square flange:

$$F = 1.013 \times 10^5 \, N \, / \, m^2 \, \times \, (0.1m)^2 = 1000N$$

This is important when designing vacuum vessels/chambers!

Some constants and equations $N_{\Lambda} = 6.02205 \cdot 10^{23} \text{ mol}^{-1}$ Avogadro constant 1 mol ideal gas in NTP = 22.41 $R = 8.3144 \,\mathrm{J/mol} \cdot K$ molar gas constant Equation of state for residual gas in terms of $P \cdot V = n \cdot R \cdot T$ moles $k = R / N_A = 1.3806 \cdot 10^{-23} J / K$ Boltzmann constant Equation of state for $P \cdot V = N \cdot k \cdot T$ residual gas in terms of number of molecules

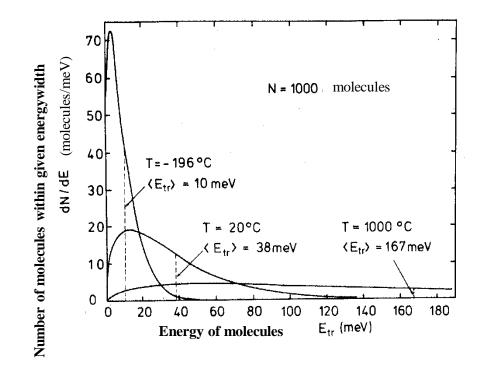
Number of gas molecules

One cubic-cm in NTP

$$N = \frac{P \cdot V}{k \cdot T} = \frac{10^5 N / m^2 \cdot 10^{-6} m^3}{1.38 \cdot 10^{-23} J / K \cdot 293K} = 2.5 \cdot 10^{19}$$

 10^{-7} mbar = 10^{-5} Pa: N = 2.5×10^9 (molecules in cm³)

Energy in residual gas


Maxwell-Boltzmann theory:

$$\frac{dN}{dE} = \frac{2 \cdot \pi \cdot N \cdot E^{\frac{1}{2}}}{\left(\pi \cdot k \cdot T\right)^{\frac{3}{2}}} \cdot e^{-\frac{E}{kT}}$$

Energy distribution of translation energy

$$\left\langle E_{tr}\right\rangle = \frac{3}{2} \cdot k \cdot T$$

Average translation energy of a gas molecule

Translation energy distribution at some temperatures.

$$U_{tr} = \frac{3}{2}NkT = \frac{3}{2}nRT$$

Translation energy

 $U_{rot} = NkT = nRT$

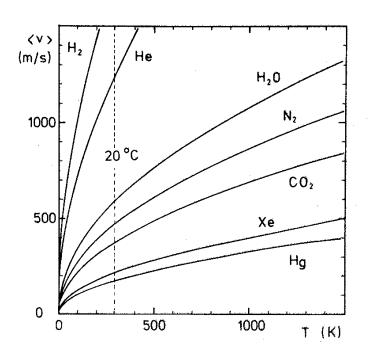
Rotation energy (for a 2-atom molecule)

Velocity

$$\frac{dN}{dv} = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$$

Velocity distribution for gas molecules

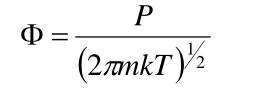
$$\langle v \rangle = \left(\frac{8kT}{\pi m}\right)^{1/2}$$


Average velocity

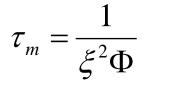
$$v_{prob} = \left(\frac{2kT}{m}\right)^{\frac{1}{2}}$$

Most probable velocity

Velocity distribution of Nitrogen molecules at some temperatures



Application in energy saving windows and thermal insulators: which gas?


Average velocity of some molecules at different temperatures

Molecules on the surface

Molecules of the residual gas stick on the surface

 $\Phi = \frac{P}{\left(2\pi m kT\right)^{\frac{1}{2}}}$ Collision rate on unit area $\Phi = \frac{P}{\left(2\pi m kT\right)^{\frac{1}{2}}}$

Time for one molecular layer formation

 ξ = residual gas molecule diameter

In ultra vacuum, Hydrogen is the dominating gas. At a pressure of 10⁻⁵ Pa and at 20 °C the molecule layer formation time is

$$\tau_{m} = \frac{\left(2\pi \langle \mu \rangle u kT\right)^{\frac{1}{2}}}{\xi^{2} P} = \frac{\left(2\pi 2.016 \cdot 1.66 \cdot 10^{-27} kg \cdot 1.38 \cdot 10^{-23} J / K \cdot 293 K\right)^{\frac{1}{2}}}{\left(2.68 \cdot 10^{-10} m\right)^{2} \cdot 10^{-5} N / m} = 12.8 s$$

Collision distance

We get also from the M-B distribution for the average collision distance or mean free path:

$$\left< \lambda \right> = \frac{kT}{\pi \sqrt{2}P\xi^2}$$

For a Nitrogen molecule at 20 °C and 100 kPa

$$\langle \lambda \rangle = 64 \text{ nm}$$

Pressure [Pa]	Collision distance
10-10	64000 km
10-7	64 km
10-4	64 m
10-1	64 mm
10 ²	64 µm
10 ⁵	64 nm

Residual gas (N) collision distances at 20 °C

If a fast electron, ion or molecule moves in a residual gas the residual gas molecules can be considered to be at rest. This leads to

$$\left< \lambda \right> = \frac{kT}{\pi P \xi^2} = \sqrt{2} \left< \lambda \right>$$

Fast particle

$$\left< \lambda_e \right> = 4\sqrt{2} \left< \lambda \right>$$

Electron

So, the mean free path for an accelerated ion at 10^{-5} Pa = 10^{-7} mbar is 905 m

This was the criterion for JYFL vacuum level!

Vacuum criteria

•For beam transport and accelerators:

- •Mean free path = trajectory length
- •Decay time due to collisions

•For "clean" manufacturing (crystal growth, surface manipulation, electronics:

•Time for building a molecular layer

•What else?

Vacuum pumps

Capacity of a vacuum pump

 $S = \frac{dV}{dt}$ Pumping speed

 $Q = P \cdot S$ Transmission of the pump

Evacuation of a vacuum chamber (without additional sources of gas or vapor)

Rough vacuum

- Estimate the required effective pumping speed S_{eff} to pump the volume V from pressure p to p_{end} in a given pump-down time t.
- Assume constant S_{eff}
- Assume **p**_{end} << **p**

Then

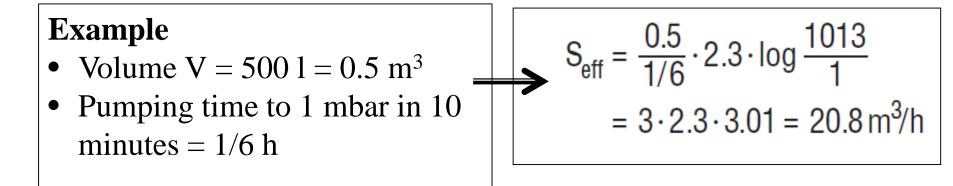
$$-\frac{dp}{dt} = \frac{S_{eff}}{V} \cdot p$$

- Start from 1013 mbar at t = 0
- **p** at **t** is calculated from

$$\int_{1013}^{p} \frac{dp}{p} = -\frac{S_{eff}}{V} \cdot t$$

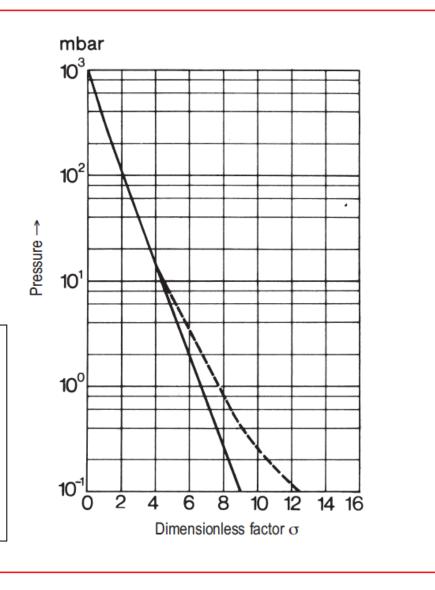
$$\ell n \frac{p}{1013} = -\frac{S_{eff}}{V} \cdot t$$

$$S_{eff} = \frac{V}{t} \cdot \ell n \frac{1013}{p} = \frac{V}{t} \cdot 2.3 \cdot \log \frac{1013}{p}$$


• Introduce a dimensionless factor

$$\sigma = \ell n \frac{1013}{p} = 2.3 \cdot \log \frac{1013}{p}$$

Then


$$S_{eff} = \frac{V}{t} \cdot \sigma$$
$$t = \tau \cdot \sigma$$
with $\tau = \frac{V}{S_{eff}}$

and
$$\sigma = \ell n \frac{1013}{p}$$

- Solid line: constant pumping speed
- Dashed line: pumping speed reduces below 10 mbar

$$S_{eff} = \frac{0.5}{\frac{1}{6}} \cdot 7 = 21 \text{ m}^{3}/\text{h}$$
 or
 $S_{eff} = \frac{0.5}{\frac{1}{6}} \cdot 8 = 24 \text{ m}^{3}/\text{h}$

Evacuation of a vacuum chamber with additional sources of gas or vapor

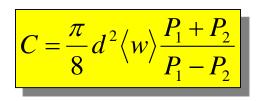
High vacuum region

- Leaks
- Vaporization (e.g. water droplets)
- Outgassing (*mbar* x *l* x *s*⁻¹ x *cm*⁻²)
 - Porous material (epoxy, some plastics, etc.)
 - Molecules on surfaces (eg. water)
- Permeation P ($m^2 \ge s^{-1}$)
 - $\mathbf{Q} = \mathbf{P} \mathbf{x} \mathbf{A} \mathbf{x} \Delta \mathbf{p} \mathbf{x} \mathbf{d}^{-1}$
 - Diffusion through walls
 - Metals <10⁻¹⁴
 - Neoprene $10^{-13} 10^{-11}$
 - Plastics $10^{-12} 10^{-11}$
 - Viton 10⁻¹²
- When the gas evolution Q is known, the effective pumping speed must be at least

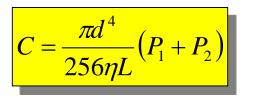
$$S_{eff} = Q/p_{end}$$

Conductance of the flow channel

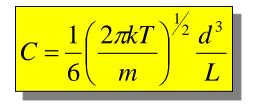
$$Q = C \cdot \left(P_1 - P_2\right)$$


Q = transmission of the flow channel

- P_1 = Pressure at inlet
- P_2 = Pressure at outlet


C is called the conductance of the flow channel

$$[C] = \frac{m^3}{s}$$


$\frac{1}{C}$ = resistance

Conductance for a long round tube in incompressible flow

Conductance for a long round tube in laminar flow

Conductance for a long round tube in molecular flow

Note! This does NOT depend on pressure