Nordic Particle Accelerator School 2017

Lund University, Sweden August 14-22, 2017

Introduction to Accelerator Physics

Francesca Curbis

Lund University/MAX IV laboratory

Outline

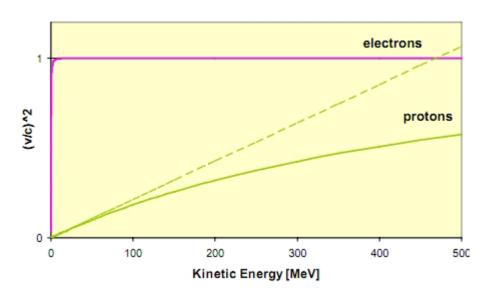
- Basic relations (units, kinetic energy, relativistic particles)
- Lorentz force & Maxwell's equations (electrodynamics)
- Different types of accelerators and electron guns
- Oscillating EM fields→linacs
- Circular accelerators
- Synchrotrons and phase stability
- Magnets (dipoles, quadrupoles, ...) and focusing properties
- RF cavities and power lost per turn

Basic relations

- $e = 1.6 \cdot 10^{-19} C$ Electric charge: electron= -1, proton= +1...
- Energy: electron volts (eV), 1 eV is the energy gained by an elementary charge when is accelerated by a voltage of 1 V.
 - We use: $keV=10^3 eV$, $MeV=10^6 eV$, $GeV=10^9 eV$, $TeV=10^{12} eV$
- The total energy of a particle is the sum of kinetic and rest energy: $W = W_0 + W_k$ where $W_0 = m_0 c^2$ electron W_o= 511 keV proton W₀= 938 MeV
- $W = mc^2 = m_0 \gamma c^2$
- $W_k = W W_0 = m_0 \gamma c^2 m_0 c^2 = m_0 (\gamma 1)$

Lorentz factor
$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}} = \frac{1}{\sqrt{1 - \beta^2}}$$

$$v = c\beta$$
 velocity


$$\beta = \sqrt{1 - \frac{1}{\gamma^2}}$$

Relativistic particles

$$W_k >> W_0$$
 and $v \approx c$

Example for 1.5 GeV kinetic energy:

electrons,
$$\gamma = 2940$$
, $\beta = v/c = 0.999999942$

protons,
$$\gamma = 2.6$$
, $\beta = v/c = 0.923$

$$p = \gamma \beta m_0 c$$

$$E = mc^2 = \sqrt{p^2 c^2 + m_0^2 c^4}$$

Lorentz force

$$\overrightarrow{F_{\mathcal{L}}} = q\left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right)$$

$$\begin{cases} \frac{d}{dt}(\gamma m_0 \overrightarrow{v}) = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}) & \text{Acceleration and steering} \\ \frac{d}{dt}(\gamma m_0 c^2) = q \overrightarrow{v} \overrightarrow{E} & \text{Energy gain rate (or loss)} \end{cases}$$

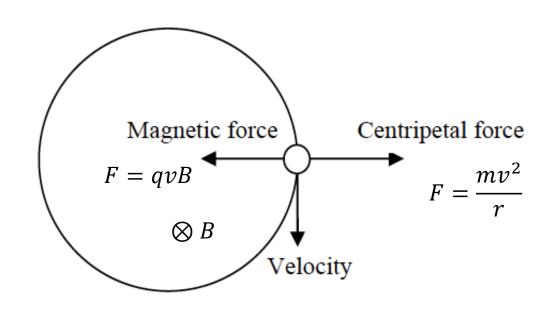
If
$$v \approx c$$
 $B = 1T \sim E = 300MV/m$

- Bending: dipole magnets
- <u>Focusing</u>: quadrupole magnets
- Acceleration: electric field
 - the particles are accelerated, i.e., their kinetic energy increases = their momentum increases

Maxwell's equations

They describe the evolution of electromagnetic fields in time and space

Magnetic field
$$\overrightarrow{H} = \frac{1}{\mu_0} \overrightarrow{B}$$
 Magnetic flux density



Circular motion

Static magnet
No accelerating field
Motion with radius r

$$\begin{cases} \vec{F} = \gamma m_0 \frac{d}{dt} (\vec{v}) = q (\vec{v} \times \vec{B}) \\ \frac{d}{dt} (\gamma) = 0 \end{cases}$$

$$evB = \frac{mv^2}{r} \longrightarrow r = \frac{mv}{qB}$$

$$\frac{1}{r} = \frac{eB}{p} = \frac{ceB}{cp} = ce\frac{B}{E}$$
$$\frac{1}{r}[m] \approx 0.3 \frac{B[T]}{E[GeV]}$$

Examples:	B, T	E, GeV	r, m
. –	1	4.5	15
	1.5	3	6.67
	2	27	45

Accelerators zoo

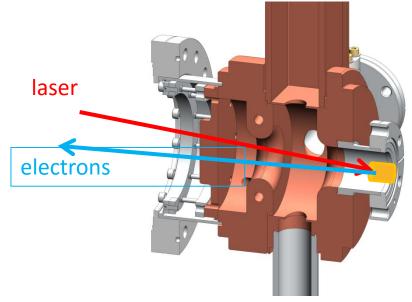
- DC guns
- Electrostatic accelerators (van der Graaf)
- Linacs (Wideroe, Alvarez, Travelling and Standing Waves RF structures)
- Cyclotrons, synchrocyclotrons, isochronous cyclotrons for protons and ions
- Synchrotrons and microtrons for electrons and high relativistic protons and ions

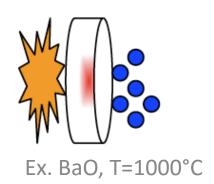
Static electric fields

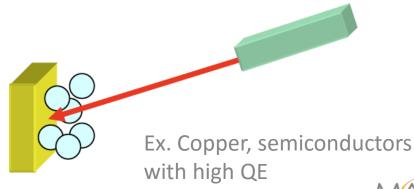
acceleration

Time varying electric fields

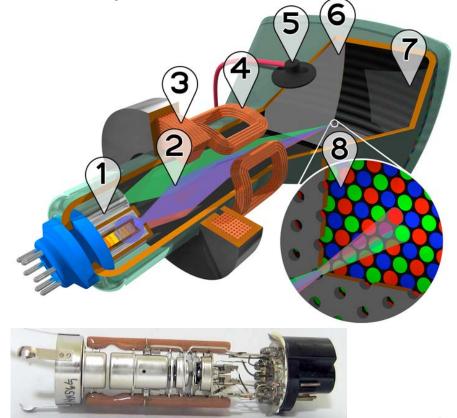
Static magnetic or electric fields → guidance/steering


The Betatron is the exception where a time varying magnetic field gives an acceleration of electrons





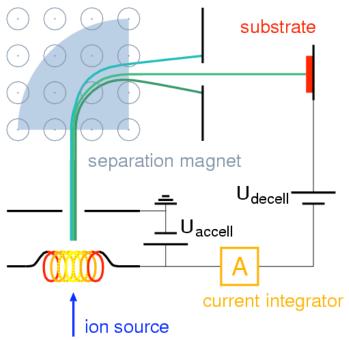
Electrostatic accelerators and DC guns



Static electric fields can accelerate

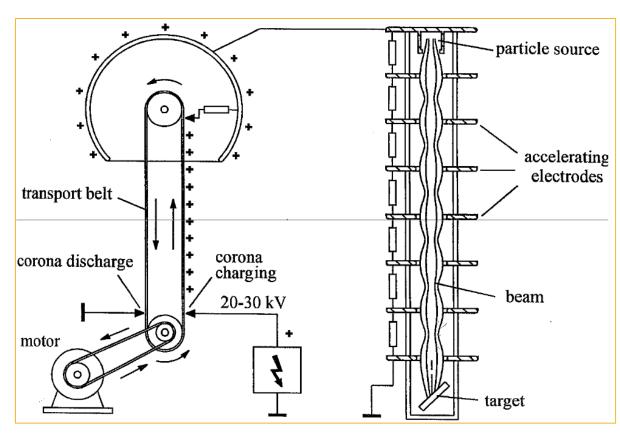
Old cathode tube TV-sets is an electrostatic accelerator.

• The x-ray equipment that is used by dentists



Electrostatic accelerators- Ion implanters

- Ion implanters are used in the semiconductor industry to dope silicon wafers with ions.
- Ion implanters are also used for surface treatment of tools to make them more wear resistant.
- The energy of the ions is typically 10 to 500 keV.



Van de Graaff accelerator

- Van de Graaff generator can reach 2 MV (up to 10MV with SF6)
- Charge from corona formation around a sharp electrode is transferred onto the belt
- Charge is collected on the dome

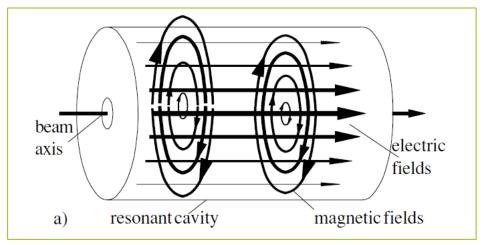
K.Wille 'The physics of Particle Accelerators'

Different versions exists which are called e.g. Pelletron, Laddertron and Tandem Accelerator

Electrostatic accelerators

- Maximum voltage is about 30 MV which gives a maximum energy of 30 MeV (e-or prot.).
- Electrons becomes relativistic while protons and ions are far from being relativistic.
- Electrostatic accelerators are more common than accelerators using oscillating fields.

Cockroft-Walton accelerator



Oscillating electric fields

- Used to accelerate to high energies
- For higher frequencies, radio waves are trapped in RF cavities having a resonance frequency identical to the radio waves

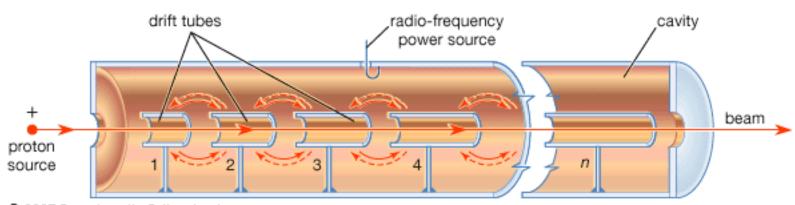
1924: Gustaf Ising published a concept for the linear accelerator based on oscillating electromagnetic fields

1928: Rolf Widerøe demonstrated it

Linear accelerators(=linac) – one passage through the RF cavities

Circular accelerators – multiple passages through the RF cavities

Time varying electric field


- Static systems have voltage limitation
- Oscillating fields overcome this problem
- The acceleration is divided in steps
- One should take into account that the velocity <u>increases</u> during acceleration

Widerøe accelerator Heavy ions up to 50 keV Field changes so that the particle feels only the accelerating field Drift tubes must increase

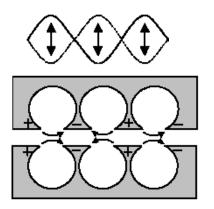
At high frequencies the Wideroe accelerator becomes a large emitter of RF power and becomes inefficient.

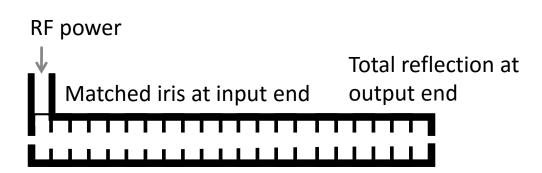
The Alvarez linac

© 2007 Encyclopædia Britannica, Inc.

The accelerator is a **large-diameter tube** within which an electric field oscillates at a high radio frequency.

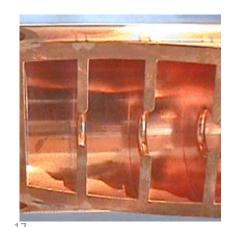
Within the accelerator tube are smaller diameter metallic drift tubes, which are carefully sized and spaced to **shield** the protons from decelerating oscillations of the electric field

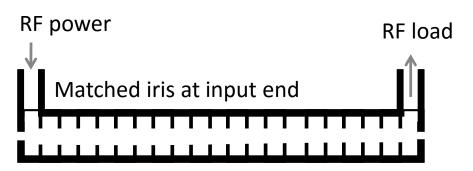




Different types of linacs

Standing wave

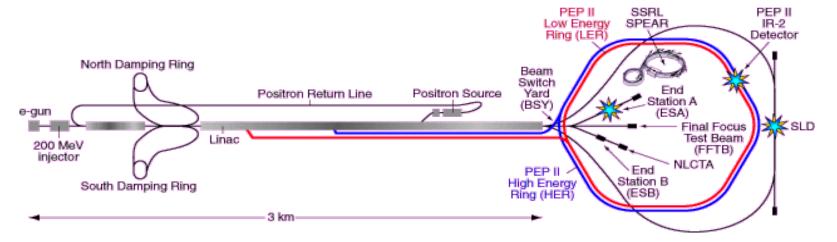

Used for ions and electrons at all energies



Traveling wave

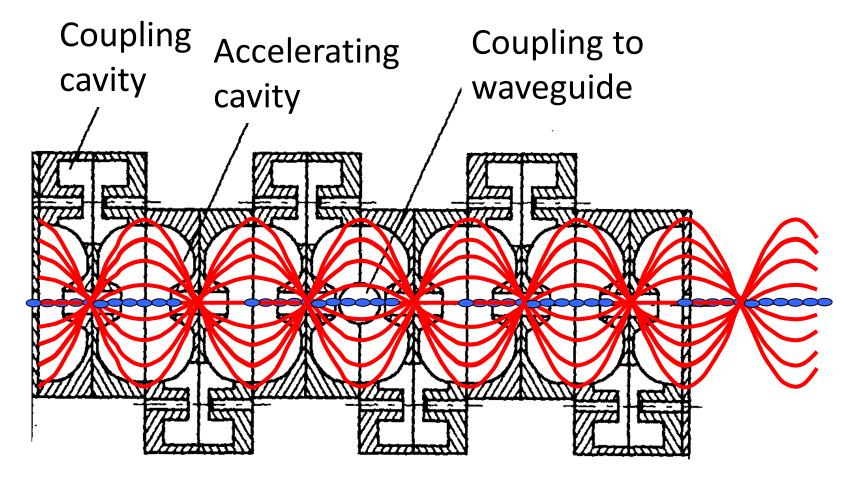
Used for relativistic electrons

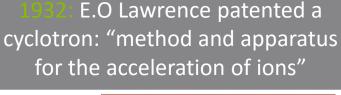
Matched iris at output end

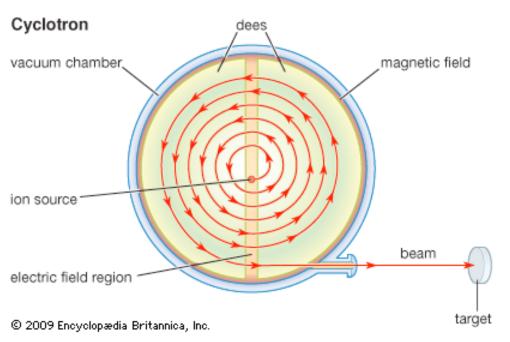

Linac based facilities

SLAC, San Francisco, California

- Particle physics
- Synchrotron Radiation with LCLS FEL

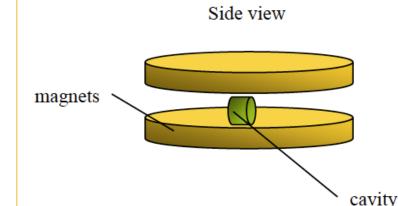

SLAC National Accelerator Laboratory


AC acceleration

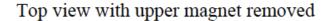


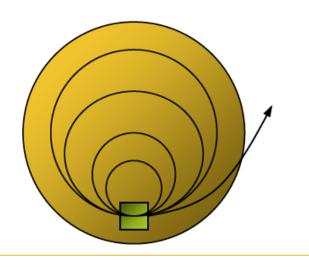
Circular accelerators

$$T = \frac{2\pi r}{v} = \frac{2\pi m}{qB} = \frac{2\pi m_0 \gamma}{qB}$$


The cyclotron uses Newtonian, or non relativistic, relations for the revolution time. It works for $1 < \gamma < 1.05$.

The peak energy can be increased by having an RF frequency that varies like in the Synchrocyclotron or even better with a magnetic field that is stronger at larger radiuses like in the Isochronous Cyclotron.

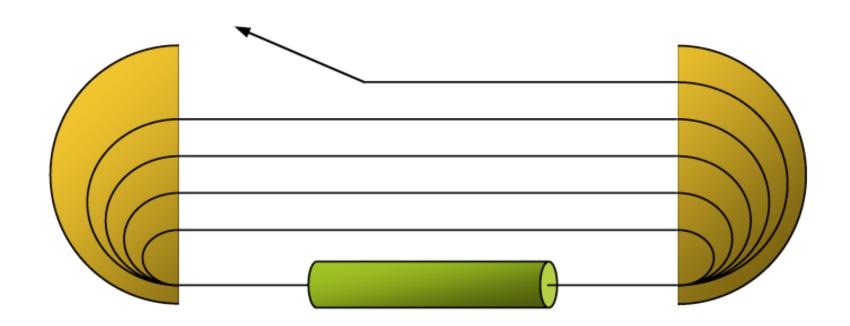




Microtron

$$T = \frac{2\pi r}{v} = \frac{2\pi m}{qB} = \frac{2\pi W}{qBc^2} = \frac{2\pi}{qBc^2}(W_0 + W_k)$$

$$\Delta T = \frac{2\pi}{aBc^2} \Delta W$$
 Time difference between each revolution


Acceleration when
$$\Delta T = \frac{k}{f_{RF}}$$
, k integer

$$n\lambda = n\frac{c}{f} = nc\Delta T = nc\frac{2\pi}{qBc^2}$$

Racetrack microtron

Like a microtron but the two halves are split

Synchrotron

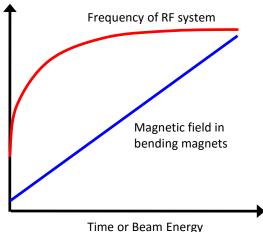
1945: E.M. McMillan and V. Veksler independently developed the concept of synchrotron

The radius is constant while the magnetic field increases

$$\frac{\frac{dr}{dt} = 0}{\frac{dB}{dt} \neq 0} r = \frac{mv}{qB} = \frac{1}{qB} m_0 \gamma c \sqrt{1 - \frac{1}{\gamma^2}} = \frac{1}{qBc} \sqrt{W^2 - W_0^2}$$

A change in the magnetic field gives a change of energy.

Frequency of RF is **constant** for electron and highly relativistic ion and proton

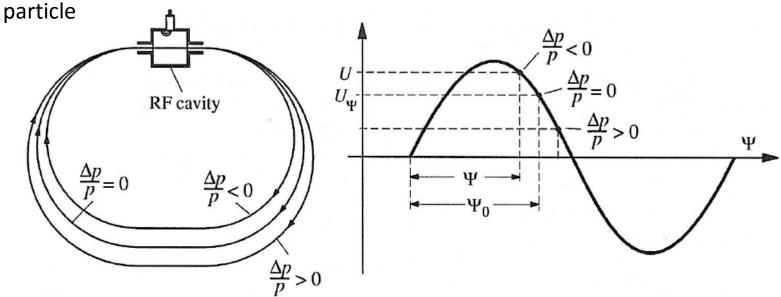

beams.

Frequency of RF system

Magnetic field in bending magnets

Time or Beam Energy

Frequency of RF is **variable** for booster rings for ion and proton beams since $v \neq c$ at start.



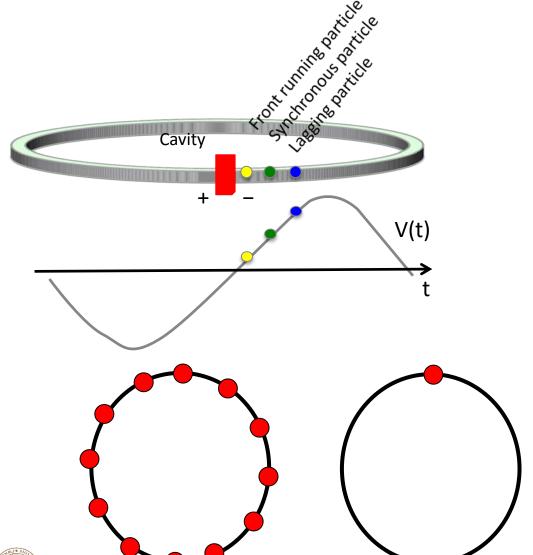
Phase stability and synchrotron frequency

The "phase stability" is the capture phenomena occurring around the synchronous

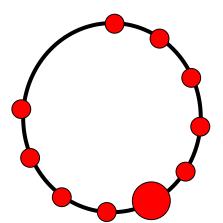
The RF frequency has to be an integer multiple of the revolution frequency

$$\omega_{RF} = h\omega_{rev}$$

h: harmonic number of the ring


Phase focusing of relativistic particles in a circular accelerator:

The particles oscillate around the **synchronous particle** Synchrotron oscillations. The frequency is typically a small fraction of the revolution frequency.


Time structure

The stored beam consists of a series of bunches.

Distance between the bunches = wavelength of RF system
Only a finite number of bunches possible

Every "bucket" does not have to be filled, gaps possible

Emission of radiation and Energy lost per turn

Power radiate by moving charge (Larmor formula)

$$P_{\gamma} = \frac{1}{6\pi\varepsilon_0} \frac{e^2 f^2}{c^3} \gamma^4$$

$$f = \frac{v^2}{\rho}$$
 with $v \approx c$ $\gamma^2 = \frac{E^2}{c^4 m_0^2}$

$$\gamma^2 = \frac{E^2}{c^4 m_0^2}$$

 r_{ρ} classical radius of the electron

$$P_{\gamma} = \frac{2}{3} \frac{r_e c}{(m_0 c^2)^3} \frac{E^4}{\rho^2}$$

If B is constant, ρ is only a function of momentum

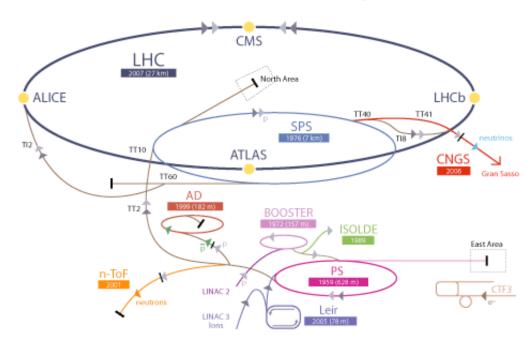
$$\frac{1}{\rho^2} = \frac{B^2 e^2}{p^2} = \frac{B^2 e^2 c^2}{(pc)^2} \approx \frac{B^2 e^2 c^2}{E^2}$$

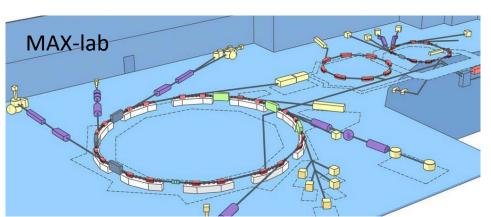
$$P_{\gamma} = \frac{2}{3} \frac{r_e e^2}{(m_0 c)^3} E^2 B^2$$

In order to provide the energy lost (i.e. the voltage required to keep the beam stored), one needs to calculate what is the energy radiated by a particle on each turn

Energy = power (P) × revolution time
$$(2\pi R/\beta c)$$

$$U_0 = \frac{4\pi}{3} \frac{r_e}{(m_0 c^2)^3} \frac{E^4}{\rho^2}$$


For electron machines above 100 GeV is not practical to scale energy and the radius linearly with the energy

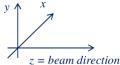

Synchrotrons

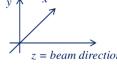
CERN Accelerator Complex

Large collider accelerators

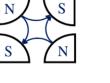
Storage rings for Synchrotron Radiation production


MAX IV


How does it look like a synchrotron?


Types of magnets

2n-pole:


Permanent magnets

n:

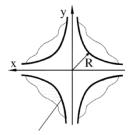
2

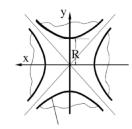
sextupole

USPAS14, Fundamental Acc. Physics and Technology

$$B_{y}(x) = B_{y0} + \frac{dB_{y}}{dx}x + \frac{1}{2!}\frac{d^{2}B_{y}}{dx^{2}}x^{2} + \frac{1}{3!}\frac{d^{3}B_{y}}{dx^{3}}x^{3} + \dots$$

Linear optics (steering):


dipoles

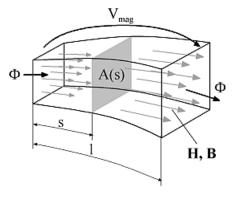

1

quadrupoles

Higher order optics (compensation or errors):

- sextupoles
- octupoles

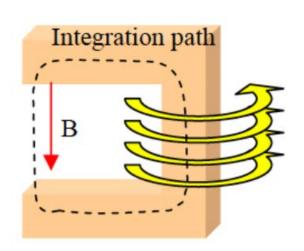
- Normal: gap in hor. plane
- Skew: rotate around beam axis by $\pi/2n$ angle


Recapitulation

 $\mu_0 = 4\pi * 10^{-7}$ vacuum permeability

The permeability:	$\mu = \mu_r/\mu_0$	Vs/Am
Magnetic flux:	Φ	Wb = Vs
The magnetic flux density:	В	$T = Vs/m^2$
The magnetic fields strength:	Н	A/m

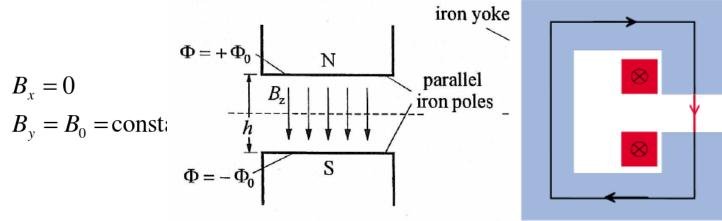
vacuum $\mu_r = 1$ iron $\mu_r = 2000$


Magnetic flux:

Ampère's circuital law:

$$\oint \vec{H}d\vec{s} = \int \vec{\jmath}d\vec{A} = nI$$

number of coil windings



Dipole magnet field

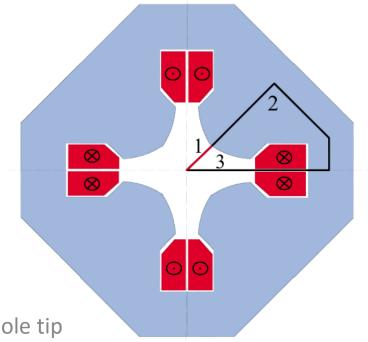
coil

K.Wille 'The physics of Particle Accelerators'

The magnetic flux density (B) at the two sides of the iron-air interface is constant:

$$H_{gap} \frac{\mu_{air}}{\mu_0} = H_{Fe} \frac{\mu_{Fe}}{\mu_0}$$

$$\oint H ds \approx h H_{gap} = h \frac{B}{\mu_0} = nI \Rightarrow B = \frac{nI\mu_0}{h}$$


Quadrupole magnet field

Ampère's circuital law:

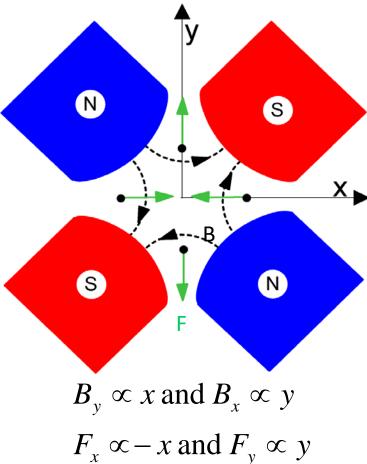
$$\oint \vec{H} d\vec{s} = \iint_{1} d\vec{s} + \iint_{2} d\vec{s} + \iint_{3} d\vec{s} = nI$$
small
$$0$$

$$B_x = G y$$

 $B_y = G x$ $G = constant$

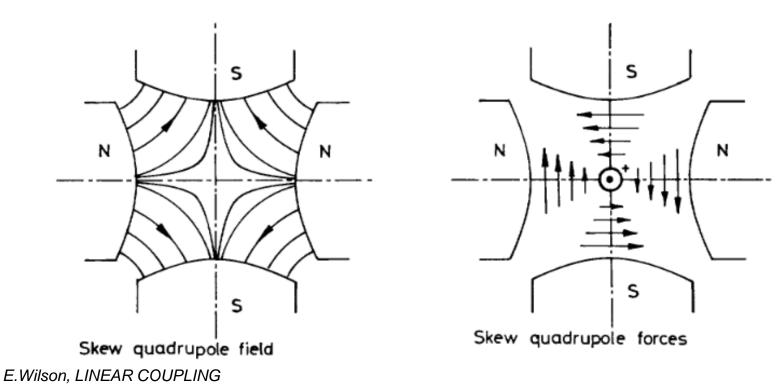
$$B_r = \sqrt{B_x^2 + B_y^2} = Gr$$
 In the direction of a pole tip

$$nI = \int_{1}^{1} H_{1} ds = \frac{G}{\mu_{0}} \int r dr = \frac{Gr_{0}^{2}}{2\mu_{0}}$$


S. Russenschuck, DESIGN OF ACCELERATOR MAGNETS

$$nI=\int\limits_{1}^{}H_{1}ds=rac{G}{\mu_{0}}\int rdr=rac{Gr_{0}^{2}}{2\mu_{0}}$$
 S. Russenschuck, DESIGN OF ACC G $G=rac{2nI\mu_{0}}{r_{0}^{2}}$ Field gradient

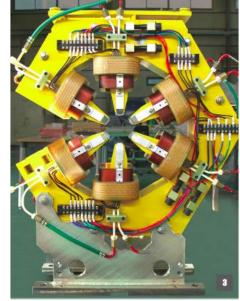
Quadrupole focusing


 $x = x \text{ and } x_y = y$

A quadrupole magnet will focus in one plane and defocus in the other!

Skew quarupoles

Introduces the coupling of horizontal and vertical motion


How they look like in real life

[http://www.stfc.ac.uk]

Quadrupole

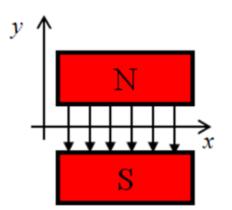
Dipole and sextupole

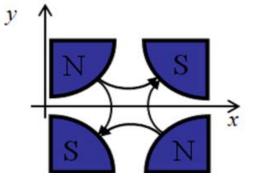
Sextupole

MAX III magnet blocks

Same technology is used in MAX IV

Properties


Dipoles: steering the beam

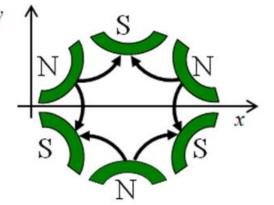

$$B_x = 0$$

$$B_{v} = B_{0} = \text{constant}$$

Quadrupoles: focusing

$$B_x = G y$$

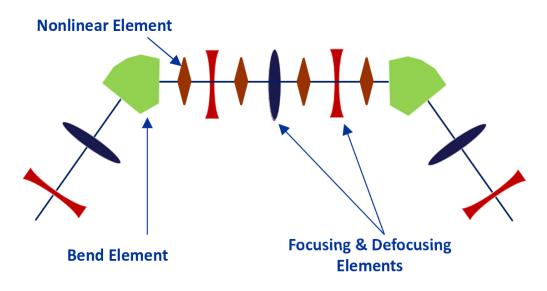
 $B_y = G x$ $G = constant$



Sextupole: chromatic correction and control of ^y nonlinear dynamics

$$B_x = 2S x y$$

$$B_y = S(x^2 - y^2)$$
 S = constant

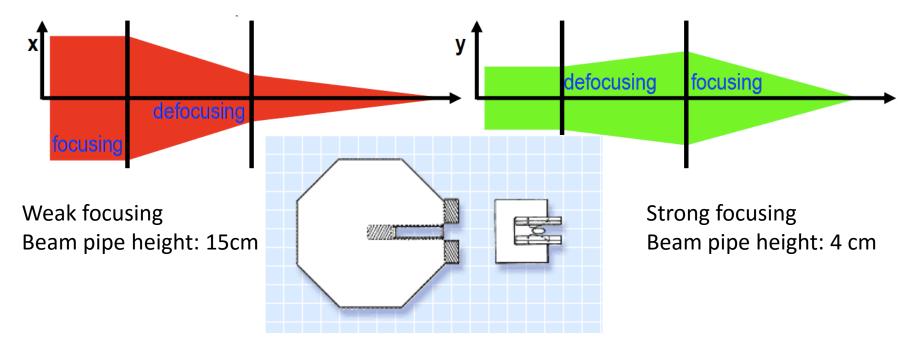


Particle steering tools

The particles should move on a ideal orbit

The magnets bend the trajectory and focus the particles

The **lattice** is the arrangement of magnets that guide and focus the beam ⇒beam optics (tomorrow)

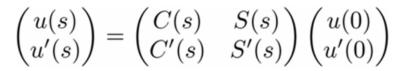


Strong focusing

1952: Courant, Livingston, and Snyder: theory of strong focusing with **discrete quadrupole magnets** for the <u>focusing</u> and **dipole magnets** for the <u>bending</u>.

Two successive elements, one focusing the other defocusing, can focus in both planes:

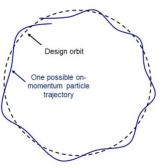
Today: only strong focusing is used


G. Hoffstaetter, Class Phys 488/688 Cornell University

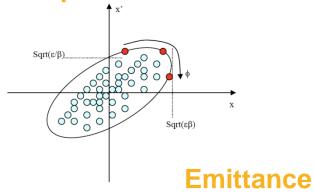
Appetizer

Matrix notation

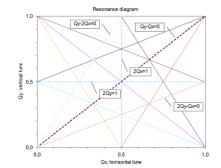
Hill's equations of linear particle motion



Betatron oscillations


$$u(s) = \sqrt{\varepsilon_u \beta_u(s)} \cos[\varphi_u(s) - \varphi_u(0)]$$

$$u'(s) = -\sqrt{\frac{\varepsilon_u}{\beta_u(s)}} \{\alpha_u(s)\cos[\varphi_u(s) - \varphi_u(0)] + \sin[\varphi_u(s) - \varphi_u(0)]\}$$


u = x, y

Phase space

Tune

Dispersion

Chromaticity

Momentum compaction

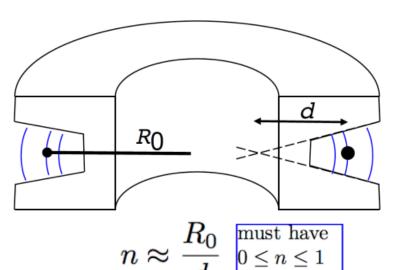
Acknowledgements

The material used for this lecture comes from E. Wallén, S. Werin and Galina Skripka



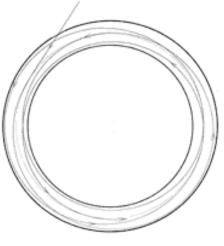
Backup

Weak focusing



The Cosmotron: 3.3 GeV proton synchrotron at Brookhaven, New

York (1952)


Weight: 4000 tons

Magnet aperture: 20 by 60 cm, internal beam pipe height: 15cm

"Minuses":

- Large beam
- Large vacuum chamber
- Large magnet aperture

Weak focusing accelerator

