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1 SCOPE	

The	purpose	of	this	document	is	to	describe	the	development	and	the	implementation	of	
the	FPGA	video	processing	algorithms.	Chapter	3	presents	the	FPGA	test	platform,	the	
target	platform	and	the	development	tools	used	during	the	process.	Chapter	4	describes	
the	implementation,	simulation	and	timing	analysis	of	each	processing	algorithm	in	
Vivado	HLS.	Chapter	5	presents	an	implementation	running	on	the	FPGA	test	platform.	

2 INTRODUCTION	

The	motivation	for	developing	and	testing	the	video	processing	algorithms	targeted	for	
FPGA	is	to	investigate	whether	the	FPGA	can	be	used	as	a	machine	protection	signal	or	
not.	The	frame	rate	of	the	final	video	system	will	run	at	28	Hz.	This	means	that	the	FPGA	
have	to	do	all	the	processing	needed	in	less	than	35	ms.	The	most	important	tasks	is	to	
investigate	and	verify	the	functionality	of	the	implemented	algorithms	by	simulation,	that	
timing	is	met	for	the	target	FPGA,	what	the	frequency	limit	is	and	what	is	the	resource	
usage.	It	is	also	important	to	do	a	functionality	test	by	running	the	implemented	
algorithms	on	a	FPGA.	The	Vivado	High	Level	synthesis	tool	has	been	used	to	develop	the	
implementation	of	video	processing	algorithms,	simulate	and	verify	the	functionality	of	
RTL	generated,	estimating	the	final	timing,	and	resource	utilization	estimation.	Vivado	
design	suite	is	used	for	integration	of	the	developed	IP’s	and	for	configuration	of	the	test	
platform	FPGA.	Five	FPGA	video	processing	algorithms	have	been	developed	at	the	time	
this	document	was	written.	A	Median	filter,	Centroid	position	calculations,	Percentage	of	
beam	outside	defined	footprint,	Peak	density	of	the	beam	and	geometrical	distortion	
correction.				
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3 FPGA	TEST	PLATFORM	AND	DEVELOPMENT	TOOLS	

3.1 Test	Platform:	Zybo	Zynq-7000	ARM/FPGA	SoC	Trainer	Board	

	

Figure	1	The	Zybo	board	is	a	SoC	development	platform	built	around	the	Xilinx	Zynq-7000	SoC	
(xc7z0101clg400c-1).			

The	Zybo	Zynq	developing	board	is	used	as	a	test	platform	for	the	video	processing	
algorithm.	It	is	built	around	a	Xilinx	Zynq-7000	SoC	(xc7z010-1clg400c)	and	contains	many	
features	that	make	it	a	favorable	choice	for	our	application.	Some	of	these	features	are:	
the	VGA	output	port	that	was	used	for	displaying	a	processed	image,	512	MB	DRAM	
makes	it	possible	to	store	several	test	images.	HLS	timing	and	resource	evaluations	for	the	
RTL	synthesis	and	placement,	was	also	done	for	the	SoC	device	on	the	ZYBO	board.		

3.2 ESS	Final	Platform		
The	FPGA	on	the	ESS	final	platform	is	a	Kintex	Ultrascale	40	(KU040)	with	yet	unknown	
speedgrade.	HLS	timing	and	resource	evaluations	for	the	RTL	synthesis	and	placement	
were	done	with	speedgrade	-1	and	-3	(xcku040-sfva784-1-I,	xcky040-sfva784-3-e).	The	
speedgrade	is	a	number	indicating	if	a	device	is	slower	or	faster,	and	have	no	consistent	
definition	across	the	Xilinx	FPGA	families.	For	Kintex	Ultrascale	Ultrascale	devices,	-3	
means	faster	than	-1.	Table	1	shows	a	few	key	resource	comparisons	of	the	Kintex	
Ultrascale	40	FPGA	and	the	Zynq	z-7010	SoC.	

	

Table	1:	Resource	comparison	of	the	Zynq	Z-7010	and	Kintex	Ultrascale	40	

Key	Features 
• Xilinx	Zynq-7000	(XC7Z010-1CLG400C)	
• 512	MB	x32	DDR3	w/	1050Mbps	bandwidth	
• 16-bits	per	pixel	VGA	output	port	
• High-bandwitdh	peripheral	controllers:	1G	

Ethernet,	USB	2.0,	SDIO	
ZYNQ	7000	XC7Z010-1CLG400C 

• 28,000	logic	cells	
• 240	KB	Block	RAM	
• 650	MHz	dual-core	Cortex™-A9	processor	
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3.3 Development	tools											
3.3.1 Vivado	Design	Suite:	Vivado	IDE		

The	Vivado	Integrated	Design	Environment	is	a	FPGA/SOC	development	tool	from	Xilinx.	
It	allows	you	to	do	RTL	design	in	VHDL,	Verilog	and	SystemVerilog	and	integrate	your	own	
intellectual	property	(IP)	together	with	a	rich	built-in	IP	library	from	Xilinx.	Other	key	
features	are	synthesizing	designs,	implementation	for	place	and	route,	bitstream	
generation	for	configuring	a	target	device,	integrated	logic	analyzer,	timing	analysis,	RTL	
diagram	examination	and	much	more.	Vivado	IDE	is	used	for	integrating	the	video	
processing	algorithm	in	a	larger	functional	test	design	for	running	on	the	ZYBO	platform.	
This	is	explained	further	in	chapter	5.	

3.3.2 Vivado	High	Level	Synthesis	tool	

The	Vivado	High	Level	Synthesis	tool	is	an	add-on	in	the	Vivado	
Design	Suite	package.	Its	main	feature	is	to	transform	a	C-	
specification	into	a	Register	Transfer	Level	(RTL)	implementation.	
C/C++	libraries	provided	like	the	HLS	video	library	includes	
commonly	used	data	structures,	OpenCV	interfaces,	AXI4-Stream	
I/O,	and	video	processing	functions.	Simulation	of	a	design	can	
be	done	pre-	and	post-synthesis.	The	pre-synthesis	validation	
verifies	the	functionality	of	the	C-program	using	a	testbench	also	
written	in	C.	The	post-synthesis	verification,	verifies	that	the	RTL	
functionality	is	the	same	as	the	C-program	functionality.	The	pre-
synthesis	validation	and	post-synthesis	verification	are	referred	
to	as	C-simulation	and	C/RTL	co-simulation	respectively.	The	
latency	estimation	in	this	document	is	generated	from	HLS	
synthesis.	The	latency	estimation	is	presenting	two	values,	

latency	and	interval.	The	latency	is	the	number	of	clock	cycles	it	takes	to	produce	the	
output.	The	interval	is	the	number	of	clock	cycles	before	new	data	can	be	presented.	The	
final	timing	and	resource	estimation	are	generated	using	using	the	evaluation	option	
during	RTL	export.		

The	video	processing	algorithms	presented	in	this	document	have	all	been	implemented	
using	the	Vivado	High	Level	Synthesis	tool.			
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4 HLS	IMPLEMENTATION	OF	THE	VIDEO	PROCESSING	ALGORITHMS	

4.1 Centroid	position		
4.1.1 HLS	implementation	

The	position	of	the	centroid	on	the	horizontal	and	vertical	axis	is	given	by:	

	

															 	

The	RMS	is	given	by:	

									 	

	

The	implementation	of	these	expressions	in	Vivado	HLS	is	shown	in	the	code	snippet	
below	

#pragma	HLS	dataflow	
	
	 LOOP0:	for	(int	n	=	1;	n	<=	rows;	n++){	
	 	 	 for	(int	m	=	1;	m	<=	cols;	m++)	
	 	 	 	 {	
	 	 	 	 #pragma	HLS	PIPELINE	
	 	 	 	 video_in	>>	Apixel;	
	 	 	 	 video_out	<<	Apixel;	
	 	 	 	 p_sum_x2	+=	m*m*Apixel.data;	
	 	 	 	 p_sum_x1	+=	m*Apixel.data;	
	
	 	 	 	 p_sum_y2	+=	n*n*Apixel.data;	
	 	 	 	 p_sum_y1	+=	n*Apixel.data;	
	
	 	 	 	 p_sum	+=	Apixel.data;	
	 	 	 	 }	
	 	 	 }	
	
	 mp_sum_x1	=	(float)	(p_sum_x1)/(p_sum);	
	 mp_sum_y1	=	(float)	(p_sum_y1)/(p_sum);	
	
	 mp_sum_x2	=	(float)	(p_sum_x2)/(p_sum);	
	 mp_sum_y2	=	(float)	(p_sum_y2)/(p_sum);	
	
	 *p_sum_out	=	(float)p_sum;	
	
	 *Cog_X	=	mp_sum_x1;	
	 *Cog_Y	=	mp_sum_y1;	
	
	 *RMS_X	=	sqrtf((mp_sum_x2	-	(mp_sum_x1)*(mp_sum_x1)));	
	 *RMS_Y	=	sqrtf((mp_sum_y2	-	(mp_sum_y1)*(mp_sum_y1)));	
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4.1.2 	HLS	C/RTL	co-simulation	

A	test	image	was	running	through	a	HLS	C/RTL	co-simulation	of	the	algorithm.	To	have	a	
set	of	comparable	data,	a	centroid	calculation	was	also	done	in	Matlab.	Figure	3	shows	
the	test	image	and	table	1	shows	the	results	of	the	test	image	running	through	matlab	
and	HLS	C/RTL	co-simulation.	

	

Figure	2:	Test	image	for	centroid	calculation	(720x576)	

	

	 MATLAB	results	 HLS	C/RTL	co-simulation	
results	

Centroid		X	position	 408.7179	 408.717896	

Centroid		Y	position	 318.8381	 318.838104	

RMS	X	 106.1724	 106.172401	

RMS	Y	 106.0952	 106.095215	

Table	2	

	

	

4.1.3 Timing	and	resource	usage	estimation	

The	results	of	the	latency	estimate	for	the	synthesis	and	the	final	timing	implementation	
of	the	centroid	algorithm	is	shown	in	table	3.	
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Table	3:	The	latency	estimate	of	the	centroid	algorithm	synthesis	

CP	(Clock	period)	required	is	the	target	clock	period	in	ns,	set	by	the	user	pre-synthesis.	
CP	achieved	post-synthesis	is	the	estimated	minimum	clock	period	the	synthesized	design	
will	run	at	without	having	any	timing	violations.	The	CP	achieved	post-implementation	is	
the	estimated	minimum	clock	period	the	implemented	design	will	run	at	without	having	
any	timing	violations.	The	estimated	timing	post-synthesis	is	done	on	a	gate-level	netlist	
based	on	a	FPGA-family	(Zynq	7000	or	Kintex	Ultrascale)	basic	primitive’s	library.		The	
estimated	timing	post-implementation	is	done	for	the	synthesised	netlist	placed	and	
routed	on	a	specific	FPGA	device	(xc7z010clg400-1	or	xcku040-sfva784-1-i).	However	the	
post-implementation	timing	estimation	will	not	take	into	account	that	there	can	be	other	
implementations	in	a	design	which	can	make	routing	and	placement	more	complex,	less	
efficient	and	with	an	increased	route	delay.	This	means	that	integrating	the	design	in	a	
larger	design	running	on	the	maximum	estimated	frequency,	the	timing	may	fail.		

The	latency	is	the	number	of	clock	cycles	it	takes	to	produce	the	output.	The	interval	is	
the	number	of	clock	cycles	before	new	inputs	can	be	applied.	The	table	is	also	showing	
latency	and	interval	in	terms	of	milliseconds.	In	the	case	of	the	centroid	position	
calculation	running	on	the	Zynq-z7010	with	a	target	clock	period	of	10	ns.	The	results	of	
the	calculation	is	ready	417068	clock	cycles	(Latency*CP	=	4.17	ms)	after	the	first	pixel	of	
a	frame	enters	the	function.	But	a	pixel	from	a	new	frame	can	be	applied	after	417026	
clock	cycles.	

4.1.4 Discussion		

As	seen	from	table	2.	the	algorithm	implemented	in	HLS	succeeded	in	generating	the	
same	results	as	the	matlab	implementation.	All	solutions	fulfils	the	requirement	of	
completing	the	calculations	within	35	ms	but	the	post-implementation	timing	was	not	
met	for	the	xc7z010	running	on	200	MHz.	The	minimum	clock	period	achieved	in	the	
post-implementation	was	5.188	ns.	This	means	that	the	fastest	achievable	processing	
time	on	the	ZYNQ-7z010	when	having	a	resolution	of	720x576	is	420562*5.188	ns	=	2.18	
ms	but	as	mentioned	the	value	may	change	when	doing	an	implementation	in	a	larger	
design.				
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4.2 Median	Filter	
4.2.1 	HLS	implementation	

The	median	filter	is	implemented	by	taking	the	values	of	a	3x3	sliding	window	through	a	
sorting	network	to	find	the	median	value	to	output.	The	input	pixel	to	output	pixel	flow	is	
shown	in	figure	4.	

	

Figure	3:	Median	Filter	implementation	

4.2.2 HLS	C/RTL	co-simulation	

Noise	was	added	to	the	test	image	in	figure	3	for	the	C/RTL	co-simulation	of	the	median	
filter.	The	result	is	shown	in	figure	5.	

	

							 	

Figure	5:	An	image	with	popcorn	noise	streamed	through	the	median	filter	in	the	C/RTL	
co-simulation.	
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4.2.3 Timing	and	resource	usage	estimation	

The	results	of	timing	and	resource	usage	estimation	of	the	Median	filter	is	shown	in	table	
5	

	

Table	4:	The	latency	estimate	of	the	median	filter	synthesis	

4.2.4 Discussion		

The	C/RTL	co-simulation	of	the	Median	filter	removed	the	pre-added	popcorn	noise	as	
expected.	This	implementation	of	the	median	filter	shifts	the	pixels	one	place	down	and	
one	place	to	the	right.	The	reason	for	this	is	that	the	output	pixel	corresponding	to	the	
median	of	all	elements	in	the	sliding	window	has	the	same	frame	coordinate	as	the	last	
incoming	pixel	which	is	bottom-right.	It	should	be	presented	as	the	pixel	in	the	middle	of	
the	window	as	shown	in	figure	4.	The	Clock	period	achieved	post-implementation	shows	
that	timing	is	not	met	for	the	ZYNQ	running	with	a	200	MHz	clock.	As	shown	in	the	table	
all	other	solutions	fulfils	the	target	requirement	and	are	also	well	within	the	required	
latency.			

4.3 Geometrical	Distortion	Correction	
4.3.1 HLS	implementation	

To	implement	the	geometrical	distortion	correction,	the	HLS	video	library	was	used.	The	
HLS	function	REMAP,	remaps	the	source	image	to	a	destination	image	according	to	a	
given	remapping.	A	line	buffer	buffers	the	required	amount	of	horizontal	lines	needed	for	
vertical	displacement.	A	map	for	both	vertical	and	horizontal	frame	coordinates,	maps	
the	output	pixel	to	the	corresponding	input	pixel.	

4.3.2 HLS	C/RTL	co-simulation	

The	following	figures	are	the	results	of	three	C/RTL	co-simulations.	The	resolution	of	the	
original	image	is	585x585	pixels.	The	line	buffer	consists	of	128	lines.	
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Original	image		 	 	 	 	 Rotation	

																					
	 	 	 	 	 	 	 Rotation	and	distortion	correction	

																					
Pre	rotated	Image	 	 	 	 	 Distortion	correction	 	 	
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4.3.3 Timing	and	resource	usage	estimation	

To	achieve	comparable	results	the	resolution	was	set	to	720x576.	The	line	buffer	was	set	
to	64	lines.	

	

Table	5	

4.3.4 Discussion	

In	the	two	first	simulations	the	image	had	a	large	vertical	displacement	due	to	rotation.	
To	remap	this	correctly	without	losing	any	pixels	the	remap	function	must	contain	
enough	line	buffers	to	cover	the	vertical	displacement.	This	will	consume	much	of	the	
resources	available	in	terms	of	BRAM.	Using	a	resolution	of	720x576	and	a	line	buffer	
with	128	lines	the	IP	will	use	65	BRAM	blocks	of	18k.	This	is	54%	of	the	available	BRAM	on	
the	Zynq-xc7z010.	One	possibility	to	avoid	this	is	to	pre-rotate	the	camera.	In	the	final	
timing	implementation	and	the	resource	usage	implementation	the	line	buffer	was	set	to	
64	lines	instead.	The	BRAM	usage	then	drops	to	37	blocks.	Again	the	timing	is	not	met	for	
the	Zynq	running	with	200	MHz.	All	other	solutions	fulfil	the	timing	requirement.	
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4.4 Peak	Density	of	the	Beam	
4.4.1 HLS	implementation	

The	peak	density	implementation	was	done	in	a	similar	way	was	as	the	median	filter.	The	
mean	value	of	the	pixels	in	a	sliding	window	buffer	is	compared	with	the	last	maximum	
mean	value.	If	the	mean	value	is	larger	than	the	last	maximum	mean	value	the	new	
maximum	mean	value	is	stored	together	with	the	centre	position	of	the	window.			

	

Figure	4	

4.4.2 HLS	C/RTL	co-simulation	

The	image	shown	in	figure	3	used	for	the	centroid	calculation	was	also	used	as	a	test	
image	for	the	simulation	of	the	peak	density	algorithm.	Table	5	show	a	comparison	of	the	
simulation	done	in	HLS	and	the	results	from	a	matlab	implementation.	The	window	for	
both	HLS	and	matlab	implementation	was	set	to	10x10	pixels.	The	row	and	column	
indexes	in	the	matlab	results	are	one	more	than	for	the	HLS	results.	This	is	because	array	
indices	starts	from	1	in	matlab	and	from	0	in	the	C	programming	language.	

	 MATLAB	results	 HLS	C/RTL	co-simulation	
results	

Peak	density	 149.3900	 149.389999	

Row	 321	 320	
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Column	 423	 422	

Table	6	

4.4.3 Timing	and	resource	usage	estimation	

	

Table	7	

4.4.4 Discussion	

As	seen	from	table	9	the	RTL	gives	the	same	results	as	a	matlab	implementation	which	
means	that	the	RTL	works	as	intended.	All	solutions	managed	to	fulfil	the	required	clock	
period	but	for	the	200	MHz	implementation	for	the	Zynq-7z010	the	latency	is	almost	4	
times	the	latency	as	for	the	100	MHz	implementation.	The	target	initiation	interval	for	
the	mean	calculation	of	the	window	is	set	to	1	clock	cycle.	Which	means	the	synthesis	
tool	will	try	to	add	the	elements	in	the	window	in	parallel.	The	achieved	clock	cycles	are	4	
cycles	hence	the	total	latency	will	be	4	times	longer.	All	solutions	fulfil	the	35	ms	
requirement.	
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4.5 Percentage	of	beam	outside	defined	footprints	
4.5.1 HLS	implementation	

This	implementation	sums	up	the	pixel	values	for	the	total,	outside	inside	and	inside	a	
rectangle.	The	rectangle	is	defined	with	parameters	top,	bottom,	left	and	right	borders.	
The	timing	and	resource	usage	estimation	is	based	on	outputting	three	summations.		

4.5.2 HLS	C/RTL	co-simulation	

In	the	HLS	C/RTL	co-simulation	the	image	shown	I	figure	3	was	used.	The	border	
parameters	were	set	to:	top	border	=	200,	bottom	border	=	400,	left	border	=	300	and	
right	border	=	500.		

	 MATLAB	result	 HLS	C/RTL	co-simulation	
results	

Total	pixel	sum	 9508224	 9508224	

Sum	outside	rectangle	 5230963	 5230963	

Sum	inside	rectangle	 4277261	 4277261	

Table	8	

4.5.3 Timing	and	resource	usage	estimation	

	

Table	9	

4.5.4 Discussion	

It	is	not	decided	yet	whether	the	output	should	be	three	summations	or	if	it	is	going	to	be	
the	actual	percentage	of	beam	outside	the	rectangle.	To	output	the	percentage	an	
additional	division	will	be	included	in	the	implementation.	This	may	affect	the	total	
latency.	The	timing	is	not	met	for	Zynq-z7010	running	on	200MHz.	The	timing	is	met	for	
all	other	solutions	and	fulfils	the	latency	requirement.			
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4.6 Total	estimated	resource	usage	
Table	10	and	11	show	the	estimated	total	key	resource	usage	of	the	five	video	processing	
implementations.	

	

Table	10:	Total	estimated	resource	usage	for	the	Kintex	Ultrascale	40	

	

	

Table	11:	Total	estimated	resource	usage	for	the	Zynq-7z010	

4.7 Latency	resolution	dependency	
The	implementations	were	synthesised	for	several	resolutions	to	find	the	relationship	
between	resolution	and	latency.	The	resolutions	were:	

• 720x480	
• 720x576	
• 1280x720	
• 1920x1080	

The	tables	below	shows	the	trendlines	for	the	relationship	between	latency	and	
resolution		

	

Table	12:	Centroid	position	calculation	latancy	resolution	dependency	
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Table	13:	Geometrical	distortion	correction	latency	resolution	dependency	

	

Table	14:	Peak	density	of	the	beam	latency	resolution	dependency	

	

Table	15:	Median	filter	latency	resolution	dependency	

	

Table	16:	Percentage	of	beam	outside	defined	footprints	latency	resolution	dependency	

4.8 Discussion	
Five	implementations	of	different	video	processing	algorithms	have	been	investigated	in	
this	document,	and	the	functionality	of	all	them	seems	to	work	as	intended.	Table	10	
shows	that	the	total	resource	usages	for	all	solutions	running	with	the	Kintex	Ultrascale	
40	are	well	within	the	available	resources.	It	is	uncertain	what	additional	video	processing	
algorithms	would	consume	but	since	the	algorithms	implemented	until	now	use	up	to	
50%	of	the	resources	available	on	ZYNQ-z7010	as	seen	from	table	11,	processing	
algorithms	such	as	the	Richardson-Lucy	deconvolution	would	certainly	blow	the	ZYNQ-
z7010	resource	budget.	From	the	timing	and	resource	usage	estimation	it	is	also	obvious	
that	the	Zynq-z7010	is	not	capable	of	running	any	of	the	algorithms	at	200	MHz.	The	
requirement	to	process	the	data	faster	than	28	Hz	is	fulfilled	for	all	other	solutions.	
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5 TEST	PLATFORM	IMPLEMENTATION			

5.1 FPGA	run	without	geometrical	correction	
The	implementation	was	done	using	the	same	test	image	used	for	all	C/RTL	co-
simulations	except	the	geometrical	correction	algortihm.	Figure	5	shows	the	
implementation	in	Vivado	using	the	Vivado	HLS	generated	IP’s	for	Centroid	position,	
Median	Filter,	Percentage	of	beam	outside	defined	footprint	and	the	Peak	density	of	the	
beam.	

	

Figure	5	

The	Zynq7	processing	system	containing	the	ARM	cortex	A9	was	exploited	for	AXI	bus	
communication	with	the	IP’s	and	for	receiving	and	sending	serial	data	from/to	a	
computer.	The	test	image	is	stored	onto	the	Zybo	DRAM	using	the	serial	line	of	the	Zybo	
to	receive	the	image	data	sent	from	Matlab.	The	results	of	the	configuration	shown	in	
figure	5	on	the	Zynq	and	running	software	on	the	ARM	processor	that	integrates	the	HLS	
IP	and	reads	data	from	the	AXI	bus	is	shown	in		figure	6	and	7.	During	the	first	run	the	
median	filter	is	turned	off.	On	the	second	run	a	noise	version	of	the	image	was	loaded	
onto	the	DRAM	and	the	median	filter	was	turned	on.	This	is	shown	in	figure	8	and	9.	
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Figure	6:	Results	in	the	PC	terminal	

	

Figure	7:	The	image	shown	on	a	screen	connected	to	the	VGA	port	of	the	ZYBO	
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Figure	8:	Noisy	image	when	median	filter	is	turned	off	

	

Figure	9:	Noisy	image	when	median	filter	is	turned	on	
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The	results	of	the	first	run	is	shown	in	table		

	 FPGA	results	 HLS	C/RTL	co-simulation	
results	

Centroid		X	position	 408.7179	 408.717896	

Centroid		Y	position	 318.838104	 318.838104	

RMS	X	 106.172401	 106.172401	

RMS	Y	 106.095215	 106.095215	

Total	pixel	sum	 9508224	 9508224	

Sum	outside	rectangle	 5230963	 5230963	

Sum	inside	rectangle	 4277261	 4277261	

Peak	Density	 149.389999	 149.389999	

Row	 320	 320	

Column	 422	 422	

Table	17:	The	results	achieved	during	the	FPGA	run	compared	with	the	results	achieved	during	the	HLS	
simulation	

5.2 FPGA	run	with	geometrical	distortion	correction	
The	geometrical	distortion	correction	IP	was	integrated	into	the	Vivado	design	suite	using	
two	VDMAs.	One	streaming	the	image	data	and	one	streaming	the	image	mapping.	The	
setup	is	shown	in	the	figure	below.	

	

Figure	10:	Geometrical	distortion	correction	Vivado	setup	
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The	image	loaded	into	the	FPGA	was	a	pre-rotated	image	similar	to	the	image	used	for	
the	C/RTL	co-simulation	done	for	the	geometrical	distortion	correction.	The	results	of	the	
run	is	shown	in	the	two	figures	below:	

	

Figure	11:	Distorted	grid	image	running	with	a	1:1	mapping	

	

Figure	12:	Distorted	grid	image	running	with	a	distortion	correction	mapping	

5.3 	Discussion	
The	results	from	the	FPGA	readout	gave	the	exact	same	results	as	the	C/RTL	co-
simulation.	This	verifies	that	the	functionality	works	as	intended.	The	geometrical	
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distortion	correction	did	run	as	intended.	The	distortion	correction	mapping	for	the	pre-
rotated	image	is	not	perfectly	correcting	the	image	but	as	the	final	result	is	the	same	as	
the	C/RTL	co-simulation	it	means	that	this	originates	from	an	incorrect	pre-created	
mapping.	The	FPGA	implementation	work	as	intended.						

6 CONCLUSION		

Five	video	processing	algorithms	have	been	developed.	Verification	on	the	functionality	
has	been	done	by	C/RTL	co-simulation	in	Vivado	HLS	and	on	a	ZYNQ-z7010	FPGA.	The	
results	from	the	C/RTL	co-simulation	showed	that	the	functionality	worked	as	intended.	
The	HLS	latency	estimations	for	the	solutions	where	timing	was	met,	all	individual	
implemented	algorithms	were	well	within	35	ms	but	as	more	complex	algorithms	will	be	
implemented	the	latency	margin	have	to	be	as	large	as	possible.	The	implementations	
until	now	have	been	done	with	single	precision	numbers	where	needed	and	there	have	
been	no	attempt	to	optimise	the	code	by	reduce	the	number	of	bits	the	values	are	
represented	with.	The	use	of	fixed	point	instead	of	floating	numbers	can	reduce	latency	
and	resource	usage	and	must	be	looked	into	in	the	future.						
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