

Document Type Project Report
Document Number ESS-0149762
Date Oct 10, 2017
Revision 1 (1)
State Preliminary
Confidentiality Level Internal
Page 1 (4)

Target and Dump Proton Beam Imaging Systems CDR RAMI and risk analysis

	Name	Role/Title	
Owner	Erik Adli	Oslo in-kind manager	
Reviewer	Håvard Gjersdal, Cyrille Thomas	Oslo researcher, ESS Imaging System responsible	
Approver			

Document Type	Project Report
Document Number	ESS-0149762
Revision	1 (1)

Date State Confidentiality Level

Preliminary Internal

TABLE OF CONTENT		PAGE	
1.	SCOPE	3	
2.	INTRODUCTION	3	
DO	CUMENT REVISION HISTORY		

1. SCOPE

This document gives an overview of identified risks and their mitigation strategies. The main risk information is provided a spread sheet form, for clarity.

2. INTRODUCTION

Please see the attached spread sheet, ESS-0149762b. The spread sheet template has been provided by courtesy of CEA. The quantification of the risks provided in the spread sheet should at his stage by considered as best guesses, based on incomplete information.

A few other general RAMI considerations:

Reliability and availability:

The target systems: once commissioned the reliability and availability will mainly depend on how well the components withstand the combined proton beam and neutron flux radiation environment. This has been discussed in the various risks related to the photon source.

The dump system: concerning the optical components, the radiation environment will be less severe than for the target systems. However, since the camera is planned to be installed in the tunnel, the survival of electronics inside the dump tunnel is a key concern.

Maintainability:

The target systems optical components cannot be accessed without pulling out the optical block and eventual slice from the plug. This is not expected to be done on a frequency basis during commissioning. On the other hand, the camera and all auxiliary electronics, including filters and spectrometers will be accessible during beam-on (placed in the A2T access area). The system will be designed to be able to do "as much as possible" in the A2T access area (varying filters is one example).

For the dump system, the camera electronics will not be accessible during "beam on". Auxiliary equipment, like filters, must therefore be remotely controllable, located in the radiation environment.

Inspectability:

An illumination system, for example shining laser light into the optical system from the A2T access area, will be installed and can be used to frequently verify the integrity of the target optical systems.

A few other RAMI considerations, including accessibility and maintainability during the commissioning of the system without beam, are discussed in [ESS-0153500].

Date State Confidentiality Level

Preliminary Internal

DOCUMENT REVISION HISTORY

Revision F	Reason for and description of change	Author	Date
1 F	PDR	Erik Adli	2016-09-09
2 (CDR	Erik Adli	2017-10-10