Electronics and Software: Functionality description

O. M. Røhne¹

Outline

1 Scope

- 2 Input assumptions
- 3 Preprocessing and normalization
- 4 Correction and deconvolution
- **5** Parameter extraction and presentation
- G Conclusion and outlook

Functionality	SW	FW
Processing/correction		
- Median noise filter	?	?
- Background subtraction	v	
- Dead pixel mask	v	
- Vignetting correction	v	?
- Geometric distortion	v	?
- Motion deconvolution		
Parameter extraction		
- Centroid position	v	v
- Peak intensity	v	v
- Percentage outside footprint	v	v
- Normalization to beam current		
- Position of fiducials		0
- Correction for temp./yield	?	?
- Histogram and intensity contours	?	
 Beam diagnostic pulse 		
Display the image @ 14 fps	v	0
- Pseudocolors		
- Store also raw data		

Light yield from luminous coating

Preprocessing: background- and noise suppression

Background subtraction

Subtract residual stray light, gracefully handling broken pixels:

- dead pixel -> black
- stuck-on pixel -> black
- hot pixel -> half the frames black

Cost: stream access to full pixel map, stream mode arithmetic

Extra credit: interpolate across broken pixels

Sliding window median filter

Standard adaptible noise filter

- effective against incoherent noise
- robust against singular subfunctional pixels

Cost: resolution degration Extra credit: fold with background subtraction, explicitly mask broken pixels

Preprocessing: correction and normalization

Temperature correction

Temperature is known to affect Luminescence:

- spectrum broadens, lines vanish
- total light yield reduced

Mitigation strategy:

- measure temperature in situ
- apply calibration curves

Worst-case scenario:

- significant variation across luminous field
- predict response map from simulation

Cost: anther full pixel map

Distortion correction

Projection distortion

Analytic composition of two projections:

- Beam-normal system projects onto target wheel
- Wheel rim projects thru off-axis pinhole camera matrix

Curved mirror distortion

In-situ calibration:

- Use actual or simulated image of rectilinear system
- Fit with 2nd degree xy-binomial

Combined correction

Combination of two distortions

- Projection distortion
- Curved mirror distortion
- Fit with 4th degree xy-binomial

Explicit 2D correction map

Motion deblur

Moving screen beam imaging

Motion blur effect:

- \blacksquare Rotational motion: $3\ m/s$
- Luminous lifetime: 1 ms

Exponential decay PSF: 3 mm

Richardson-Lucy deconvolution

Iteratively reconstruct the latent image from the observation

$$u^{(t+1)} = u^{(t)} \cdot \left(\frac{d}{u^{(t)} \otimes p} \otimes \hat{p}\right)$$

W H Richardson, 1972, DOI: 10.1364/JOSA.62.000055 L B Lucy, 1974, DOI: 10.1086/111605

Example demonstration

NumPy/OpenCV modeling:

- Lumnious disk: 6 mm diameter
- Motion blur: 3 mm lenght
- Poisson noise: n = 100 ph/pix

Deconvolution, six iterations shown

Sliding window maximum search

- Use noise filtered and normalized image
- Streaming mode, conveniently done in HW
- Peak position can be corrected a posteriori

Centroid and RMS

Moments of the intensity distribution

- Calculate on corrected image
- Streaming mode, conveniently done in HW
- Possibly correct for motion blur

Extracted parameters are exported as EPICS PV

Nominal beam profile

8 M simulated protons (H D Thomsen, Aarhus)

- Green: nominal field-of-view
- Red: beam entrance window
- Pink: 99.9% nominal beam
- Purple 99.0% nominal beam

Marginal intensity

Counting photo-electrons in margins

- \blacksquare Marginal pixels: 10 % / 0.4 $\rm Mpix$
- Pixel noise: 1.4 e-
- Achievable threshold: 4.5 ke- (5σ)
- Comparable full pulse: 36 Ge- (est.)

Relative threshold e.g. $99.9\ \%$ well within reach

Operator screen presentation

Summary and outlook: processing functionality

