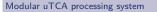
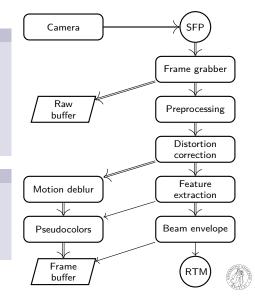
Electronics and Software: System architecture

O. M. Røhne¹



Outline


1 Scope

2 System architecture

- 3 Camera system
- Modular components
- 5 Conclusion and outlook

- Cameralink and GigE Vision input
- Support hybrid HW/SW processing pipeline
- Numerous full pixel maps, SRAM or auxiliary streams
- Synchronous veto signal
- Preprocessed streams and parameters to SW subsystem

Software processing system

- Direct interface to AXI-registers and streams
- Fast SIMD/OpenCL capacity
- Write streams to permanent storage
- Export to EPICS PV

MicroTCA.4 chassis IOxOS IFC 1410 Timing, trigger, synchronous veto output

Target imaging camera: Hamamatsu ORCA-Flash4.0 V3

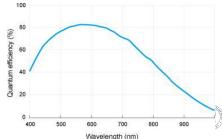
Features and specifications

Sensor type	Hamamatsu sCMOS
Quantum efficiency	82 % @ 560 nm
Pixel size	$6.5 \times 6.5 \mu m^2$
Pixel count	2048×2048
Full well capacity	30 ke ⁻ (typ)
Readout noise	1.4 e ⁻ (rms)
Resolution ADC	16 bit
Interface	Camera Link, USB 3.0
Frame rate	30-100 fps

ORCA:Flash

Baseline low-noise camera

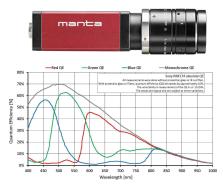
Unit cost: 12 kEUR. Integrating the camera, including the Camera Link (or USB 3.0) interface represents a significant effort on behalf of the ICS team.


Testing/prototyping: Allied Vision Manta G-419B

Unit cost: $2\ \mathrm{kEUR}.$ GigE Vision interface already integrated.

Resolution 4 Mpix, pixel size $5.5 \times 5.5 \mu m^2$.

Full well $13.5~{\rm ke}^-,$ noise floor $13~{\rm e}^-.$ Dynamic range $60~{\rm dB},$ much below the ORCA-Flash4.0.


Allied:Manta

Fe

Baseline replacable camera

Unit cost: $1.2 \ \mathrm{kEUR}$. Industrial type cameras are relatively low-cost and easy to use, featuring GigE Vision readout and Power-over-Ethernet (PoE). Due to the limited dynamic range this camera type is not sufficient for the target imaging low-light scenario.

Interface card

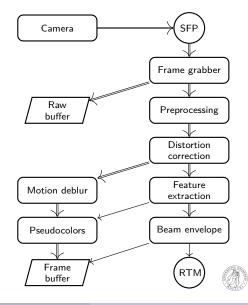
- GigE Vision, just needs a PHY-implementation
- Cameralink FMC also exists
- (assuming USB is not industrial-grade)

FPGA/CPU resources

- FPGA: Xilinx Kintex UltraScale KU040/KU060
- CPU: NXP QorlQ T2081 Quad core Power/AltiVec @ 1.8 GHz
- PCIe: Data stream to CPU-board

MicroTCA.4 chassis

- Power supply, possibly redunant
- MicroTCA Carrier Hub and CPU
- Rear Transition Module, for synchronous signals


Services infrastructure

- Power, cooling networking
- Remote power-up, booting
- Data recording/storage

Example (Non-supported chassis)

- vadatech VT812
- Representative size
- MCH/CPU
- Power

- Standard camera: Allied Vision Manta G-235B
- Low noise camera: Hamamatsu ORCA-Flash4.0
- Modular electronics: ESS selection
- Need practical experience with target platform