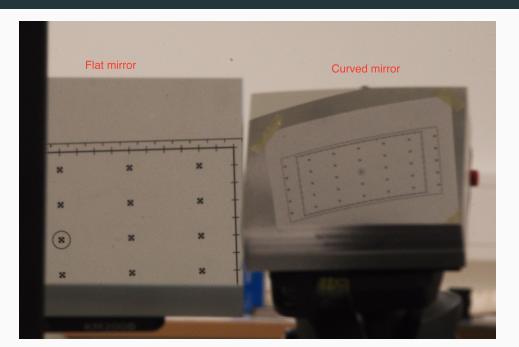

Target Optical Systems

Håvard Gjersdal

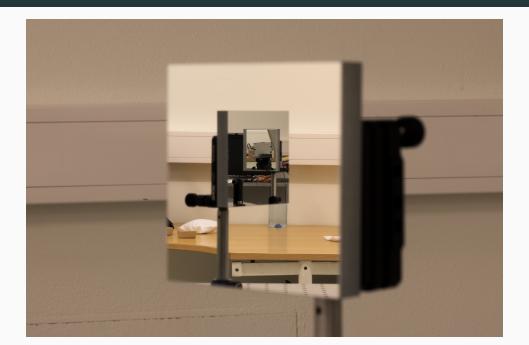
2017-10-23

University of Oslo

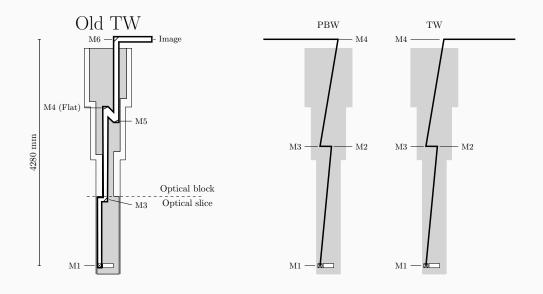
Introduction

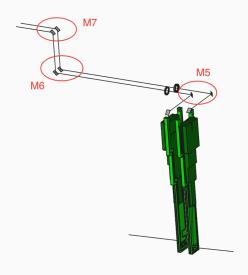

Requirements

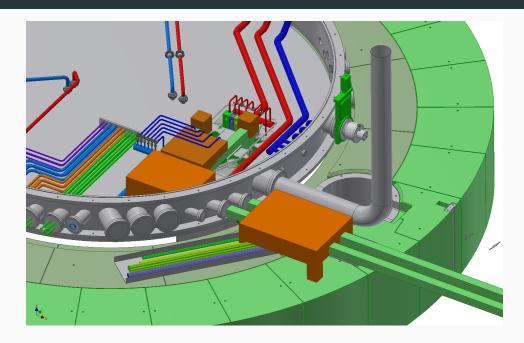
- Field of View: We must see the full beam window, and fiducials surrounding it
- Resolution: Better than one mm in object space
- Collect sufficient light for extracting beam information

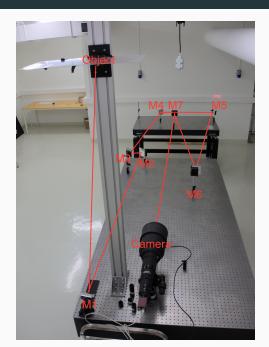

Optical system presented at PDR (Obsolete)

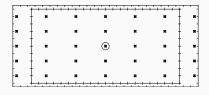
First mirror, only curved mirror

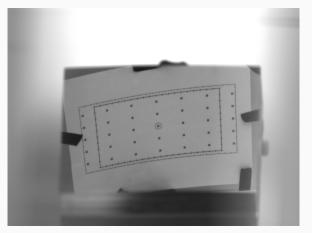

Flat mirrors


Imaging

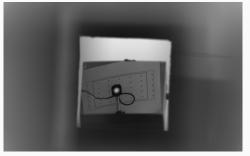

Optical path through PBIP


Full optical path

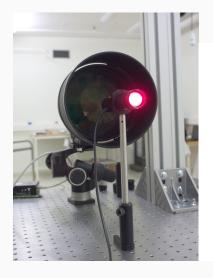

Mirrors above PBIP

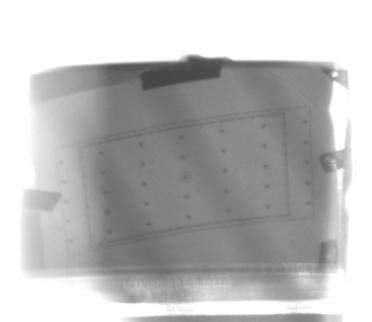


Prototype


Prototype performance

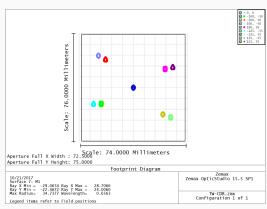
Prototype light collection

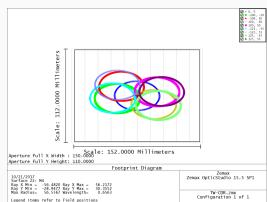

Light as bright as HV1 in 16MeV, 15 nA/cm²


Exposure time set to 7140 μ s, should correspond to less light on the sensor than a test pulse in ESS on fresh coating.

Illumination

Optical black

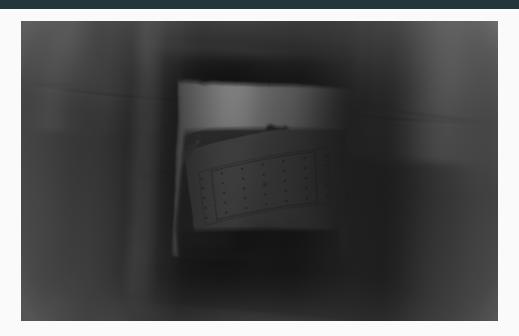



TOLERANCES

Loss of light



Error budget



Loss of field of view

Vignetting

Mirror interfaces

	Translations			Rotations			
	X	Υ	Z	Х	Υ	Z	
M1	1 mm	1 mm	1 mm	0.3°	0.3°	0.3°	
M2-M7	5 mm	5 mm	5 mm	0.3°	0.3°	0.3°	

Installation of PBIP in Monolith

	Translations			Rotations			
	X	Υ	Z	Χ	Υ	Z	
PBIP	5 mm	2 mm	2 mm	0.3°	0.3°	0.3°	

Operation

	Translations			Rotations			
	X	Υ	Z	X	Υ	Z	
M1	1.5 mm	1.5 mm	1.5 mm	0.3°	0.5°	0.5°	
M2, M3	1 mm	1 mm	1 mm	0.06°	0.06°	0.06°	
M4-M7	2 mm	2 mm	2 mm	0.06°	0.06°	0.06°	

	Translations			Rotations		
	X	Υ	Z	Χ	Υ	Z
Thermal deformation to the interface	1 mm	1 mm	1 mm	0.3°	0.3°	0.3°
Thermal deformation of mirror/mount						
Initial misalignment	0.4 mm	0.4 mm	0.4 mm	0.1°	0.1°	0.1°

Procurement

Skal fikses

- We are in contact with Kugler for mirror manufacturing
- Lead time for approx 7 months for curved mirrors, less for flat mirrors.
- A full thermomechanical simulaiton for PBIP not done. If the tolerances cannot be met, we may need to redesign.
- Protective coating not yet determined. This must be done before we can order mirrors.
- Mirror mounts must be tested in the lab.
- M1 will be heated to relecant temperatures on the mount.

Next steps

Skal fikses

- A full thermomechanical simulaiton for PBIP not done. If the tolerances cannot be met, we may need to redesign.
- Protective coating not yet determined. This must be done before we can order mirrors.
- Mirror mounts must be tested in the lab.
- M1 with mount will be heated to relevant temperatures.