OF LA RECHERCHE À L'HOUSTRIE

nBLM SYSTEM STATUS

Laura Segui

(laura.segui@cea.fr)

21/11/2017 4th ESS BI Forum OF LA RECEIPTING & CONDUCTION

of LA RECEIPTER & L'INDUSTRY

nBLM → neutron Beam Loss Monitoring system based on the detection of fast neutrons with Micromegas detectors. + low sensitivity to gammas and X-Rays.

- Objective: Protection + monitoring normal operation
 - ✓ To maintain accelerator activation at a low level (loss << 1 W/m)
 - ✓ For fine beam tuning purpose, particularly for high beam intensity
 - ✓ Machine Protection
- Project to deliver and commission 42 modules (84 detectors) by April 2019
- To be installed mainly in the DTL and Spokes regions: E_{proton} 3.6 216 MeV
 - Some will be tested also at higher energies
- Why new BLM?
 - Complementary to the others ESS BLM systems
 - At low beam energy only neutrons and photons can escape beam pipe
 - Photons :
 - X-rays and γ's are highly produced by the RFQ and superconductive BLM insensitive cavities to photons
 - Impossible to distinguish contributions coming from beam or RF...
 - Neutrons :
 - Thermal neutrons: no loss locations
 - Fast neutrons: good for beam loss representation

BLM insensitive

to thermal n's

OF LA RECEIPTION & CONDUCTION

Cea project planning

Two types of detectors: slow and fast

- Different physical reaction to create the charged particles from the neutrons
- Different applications

	SLOW	FAST	
Convertor	B ₄ C	Mylar or Polypropylene	
Reaction	(n,α) ¹⁰ Β	(n,p)	
Signal	Fast neutrons after moderation	Fast neutrons	
Detected energy	~constant	onstant Continuum distribution of energies	
Sensitivity	10 ⁻⁶ < En < 100 MeV	En > 0.5 MeV	
Solid angle	4π	2π , n coming from the front only	
Efficiency	~few n·cm ^{-2·} s ⁻¹ ~10-100 times smaller		
Response time	~200µs ~0.01µs		
Objective	Monitoring of small losses	Alarm (in 5 μs) Fine structure of the lost	
Shielding	Yes, for thermal neutrons	Not needed	

L. Segui

Two types of detectors: slow and fast

SLOW

- □ Absorber shielding
- Detection of fast neutrons after moderation in polyethylene (~4cm)
- Gas chamber with layer of B4C
 - (n, α) ¹⁰B rea
- \Box More efficient, 4π , but slower response

FAST

- Recoil protons produced by neutrons in polypropylene
- □ High flux high energy n's (>0.1 MeV)
- □ Faster response
- Just the gas chamber with polypropylene at the cathode

4

Two types of detectors: slow and fast

SLOW

- □ Absorber shielding
- Detection of fast neutrons after moderation in polyethylene (~4cm)
- Gas chamber with layer of B4C
 - (n, α) ¹⁰B rea
- \Box More efficient, 4π , but slower response

FAST

- Recoil protons produced by neutrons in polypropylene
- □ High flux high energy n's (>0.1 MeV)
- □ Faster response
- Just the gas chamber with polypropylene at the cathode

от на нерелоски А сториктии

Cea NBLM DETECTORS

New detectors design

- New mechanics to improve electronic shielding
 - More compact, easier for installation, more "industrialized"
 - All connections in front
 - Same mechanics for fast /slow
- New electronics: mezzanine cards
 - One for signals + PAs; another for HV
 - Fastr replacement
 - Easier to test different options → no need ^{Des} to change detector
 - More details in Philippe's talk
- Design of closed gas recirculation system via an oxisorb filter
 - Needed for tests at LINAC 4

or ta espanoles à consume

Cea NBLM DETECTORS - NEW DESIGN

Ce2 NEW DETECTOR PRODUCTION

Mechanics

- Initially construct 4 chambers → for Dec 2017
- When finalized, ~90 chambers
- Production to start in ~June 2018

Micromegas

- 3x3 detectors per PCB (hopefully!)
- **2 boards** initially \rightarrow for Dec 2017 Jan. 2018
- 10-12 boards by June 2018
- Bulking at DEDIP lab
- Pre-series production to start immediately

FEE + HV boards

- Design done (more details in Philippe's talk)
- First boards will be ordered soon

Gherber for 3x3 MMs board

Actual design with electronics on-board. The detector itself does not change

Test Facility	Particle	Test	Date
Birmingham MC40	Protons to material target	 Response under different loss scenarios Electronics ageing 	Nov-17 + in 2018
LINAC-4	Protons	RF backgrounds and response to losses	Feb-April 2018
ORPHEE CEA/Saclay	Thermal neutrons	Response to thermal neutrons	2018
Amande (CEA/Cadarache)	Mono-energetic neutrons	Efficiency studies. Different poly and convertors thickness	Feb or March 2018 (6days)
ІРНІ	Neutron production	Response study for different energies	From January 2018
Upssala + Saclay	Testing the ESS cryo- modules	Response to RF backgrounds	From January 2018

Ceal NBLM DETECTORS DISTRIBUTION (I)

⊘ NBLM DETECTORS DISTRIBUTION (II)

_	Cystem of oz detectors will be installed		
	164 HV cables + 82 signal cables + 3x82 LV		
	cables + gas lines		
	Detectors will be grouped for the gas lines and		
	amplifiers low voltage cables		

System of 82 detectors will be installed

- Two type of patch panels (2x6):
 - Gas
 - Cables connectors
- Start design of detectors support
 - Rail along linac
 - Flexibility to move the detector in order to optimize the beam losses detection

Detectors in	Gas line	# of detectors
MEBT-DTL1	Line 1	12
DTL2	Line2	8
DTL3	Line 3	8
DTL4	Line4	8
DTL5	Line 5	8
SPK1-4	Line6	8
SPK5-8	Line 7	8
SPK9-13	Line8	10
MB-HB	Line 9	4
Bend Magnet	Line 10	6

Cea NBLM DETECTORS INTEGRATION IN ESS (II)

ог на верелосея 1 извритии

CEO NBLM GAS SYSTEM

General design

- The gas system consists in 3 parts:
 - 1. The bottle storage area outside the building
 - 2. Gas distribution system
 - 1. Distribution and return lines from (to) the rack to (from) the accelerator tunnel
 - 10 distribution + 10 return lines
 - 3. Gas Line system fo group of detectors

CEA NBLM GAS SYSTEM

- > Micromegas are gaseous detectors. Work in circulation with open circuit
- High reliable system for the 84 detectors

- Since last BI Forum
 - ✓ Initial tests with prototypes
 - \checkmark \rightarrow Design of new detectors
 - Mechanics
 - Electronics → Philippe's talk
 - ✓ PDR1.2 approved
 - Fix distribution of detectors
 - $\checkmark\,$ Start design of detectors supports and their integration in the linac
 - ✓ Definition of analysis algorithm
 - ✓ Specification of control system
 - ✓ GUI development

Yannick's talk

- Next months are critical to maintain schedule
 - New detectors ready by beginning next year for full characterisation
 - Finish cable definition for installation.
- First tests with full acquisition system on-going
- Integration of gas pipes design into model on-going → Thank you for the support from ESS!

DEDIP

Stephan Aune System de Gaz Détecteurs MicroMegas

Michel Combet Front-End Electronics

Daniel Desforge Mechanical Designer

Mariam Kebbiri

> Détecteurs *MicroMegas*

DIS

Françoise Gougnaud

Pascal Le Bourlout

Front-End Electronics Philippe Legou Detector et Front-End Electronics

Olivier Maillard

Front-End Electronics

Tom Joannem

Bertrand

Yannick Mariette

ESS-I WP Diagnostics

Thomas Papaevangelou, Chef de Projet

Tsiledakis,

Victor Nadot

or is repaired 1 consistent

BACK-UP

OF 14 RECEIPTER & CONDUCTED

MICROMEGAS DETECTORS

 MicroMesh Gaseous Structures
 (Micromegas) are an improved amplification structure used to measure the ionized signal in a gaseous detector.

□ The detector consists on two parallel plates:

- a metallic micromesh suspended over an anode plane by insulator pillars
- The device operates as a two-stage parallel
 plate avalanche chamber in two stage
 - Conversion zone
 - Amplification zone

SLOW DETECTOR

- Dependency with
 - Moderator thickness
 - MMs size
 - B4C thickness
 - Absorber thickness
- Dependency with initial neutron energy
- 4 cm gives the most constant response over all range of energies

- Dependency with moderator thickness
 - ~5% detected in <1 µs for 4 cm
 - Requirement by ESS 5 µs response in total, 3µs for detection and FEE
- Dependency with initial neutron energy

SLOW DETECTOR

Gamma discrimination

- Only sensitive to high energie gammas
- With an energy threshold we can reject them
- Thermal neutrons
 - Energies between 0.01 and 1 eV
 - Efficiency of < 0.007 % already with an energy deposited threshold of 10keV

OF LA RECEIPCHE À L'INDUSTRI

FAST DETECTOR

FAST DETECTOR

Gamma discrimination

CEA NBLM GAS SYSTEM

- Gas: He + 10% CO₂
- Flow: \sim 5 l/h, in recirculation
- P ~ 1 atm
- Volume/detector ~ 0.25 l
- Leak tight and low outgassing
- Gas bottle storage: 6-12 rack premix
 - ~200 bar/bottle, 50 I \rightarrow
 - 2 IN/2 OUT lines (1 in use, 1 spare)
 - Outside gallery
- From gas bottle to gas rack to patch panel to tunnel
 - Distribute in 5 lines \rightarrow one per DTL, in parallel
 - 5 IN/5 OUT Lines going to tunnel (+ spares)
 - Electrovalve in/out in Klystron gallery
 - Isolate system
 - Flowmeter in/out in Klystron gallery
 - Leak monitoring
- Gas in serial for detectors in DTL

