

# Giuseppe Aprigliano

NMX Instrument Lead Engineer Instrument Hazard Analysis

www.europeanspallationsource.se

15<sup>th</sup> February , 2018

### Content

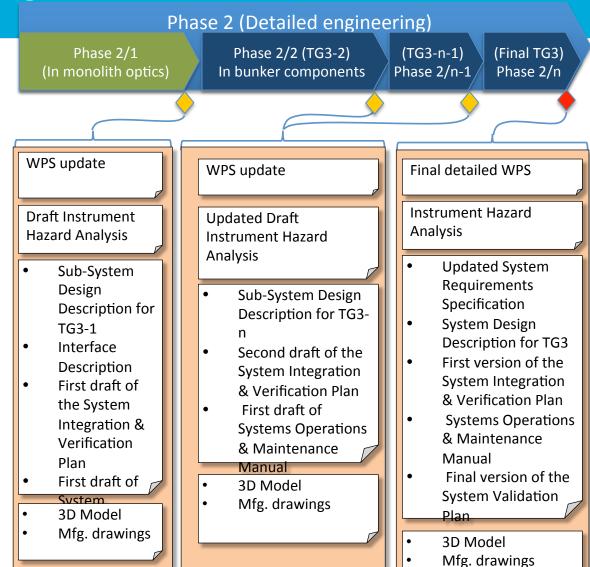


- The IHA within the TG3 data package
- ESS processes and criteria
- ESS-0047810 Guideline for IHA
- ESS-0100583 Template for IHA

Example movies and example spreadsheet are available upon request, E-mail to giuseppe.aprigliano@esss.se

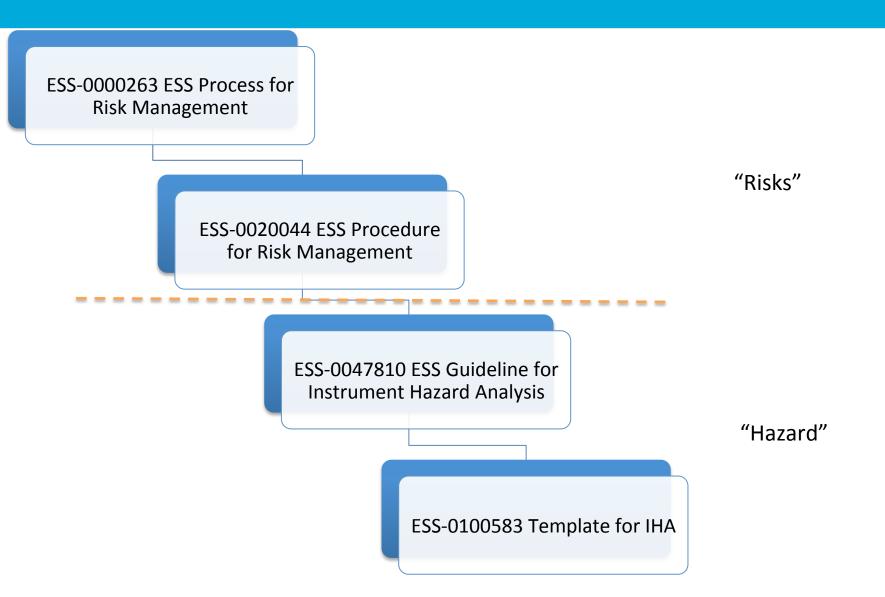
## Phase 2 data package




ESS-0099059 Neutron instrument design and construction – Phase 2 data package Specification

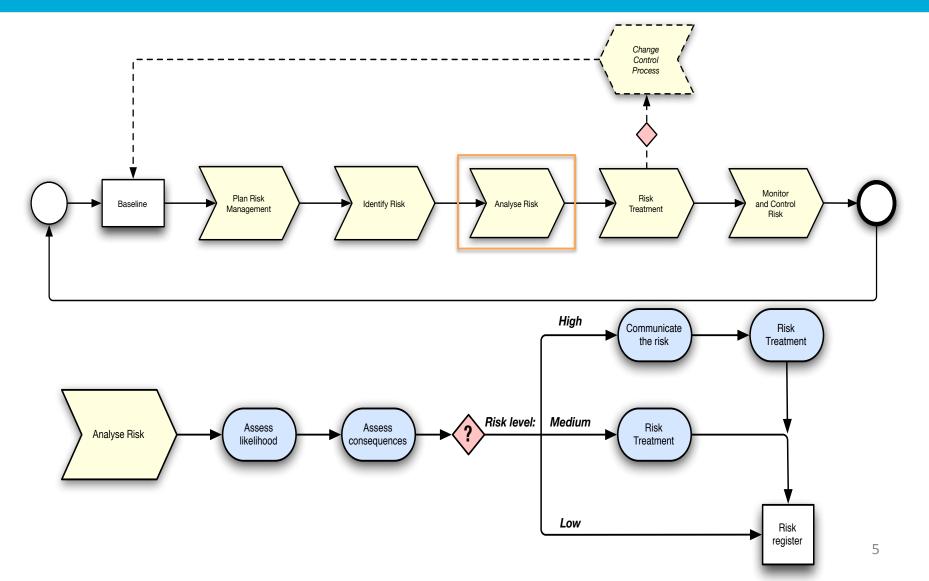
#### **Safety Documentation**

**Instrument Hazard Analysis** 


ESS-0047810, ESS Guideline for IHA
ESS-0100583, ESS Template for IHA
ESS-0016468, ESS rule for identification and classification of safety important components

Radiation Safety Analysis
<a href="ESS-0052625">ESS-0052625</a> NOSG phase 2 guidelines for designing instrument shielding for radiation safety






## Current framework at ESS



# ESS-0020044 ESS Procedure for Risk Management (J. Wollberg)





# ESS-0020044 ESS Procedure for Risk Management (J. Wollberg)



|             | Phase |                                                     |                                                             | 1     | 2           | 3       | 4            | 5            |
|-------------|-------|-----------------------------------------------------|-------------------------------------------------------------|-------|-------------|---------|--------------|--------------|
|             |       | Construction                                        | Operation                                                   | Minor | Substantial | Serious | Very serious | Catastrophic |
|             | 5     | Most likely to occur during construction            | More frequent<br>than once per<br>5 years of<br>operation   | 5x1   | 5x2         | 5x3     | 5x4          | 5x5          |
|             | 4     | Likely to<br>occur during<br>construction           | Less frequent<br>than once per<br>5 years of<br>operation   | 4x1   | 4x2         | 4x3     | 4x4          | 4x5          |
| LINCIIIIOOU | 3     | May occur<br>during<br>construction                 | Less frequent<br>than once per<br>10 years of<br>operation  | 3x1   | 3x2         | 3x3     | 3x4          | 3x5          |
|             | 2     | Unlikely to occur during construction               | Less frequents<br>than once per<br>25 years of<br>operation | 2x1   | 2x2         | 2x3     | 2x4          | 2x5          |
|             | 1     | Most unlikely<br>to occur<br>during<br>construction | Less frequent<br>than once per<br>100 years of<br>operation | 1x1   | 1x2         | 1x3     | 1x4          | 1x5          |

Consequence

# ESS-0020044 ESS Procedure for Risk Management (J. Wollberg)



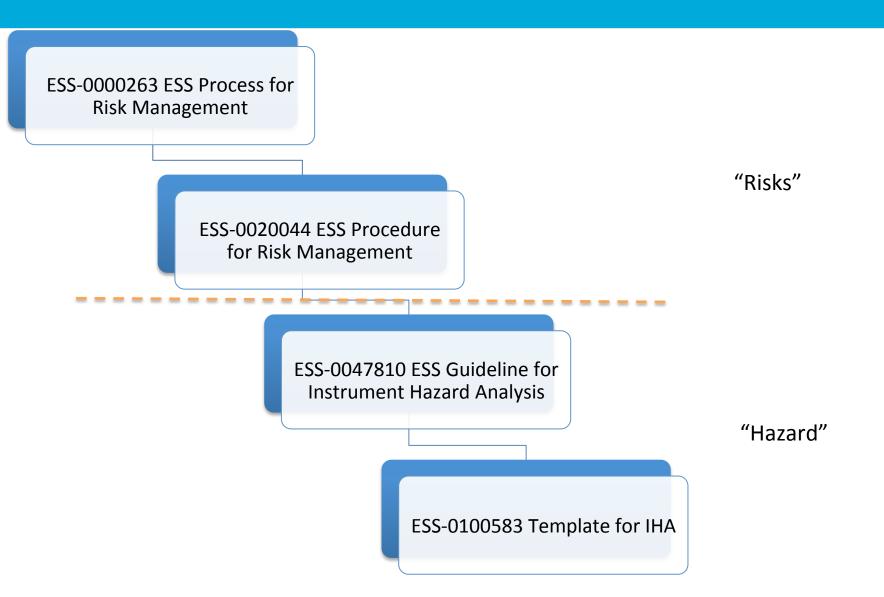

|                   | 1= Minor                     | 2 = Substantial                           | 3 = Serious                                            | 4 =Very Serious       | 5=Catastrophic |
|-------------------|------------------------------|-------------------------------------------|--------------------------------------------------------|-----------------------|----------------|
| Personal Injuries | Minor injuries or discomfort | Injuries requiring professional treatment | Injuries leading to<br>more than three<br>days absence | Permanent<br>injuries | Fatal outcome  |

Table 1 Risk levels, acceptance criteria, and descriptions.

| RISK LEVEL          | CRITERIA (LXC) | Description                                                         |
|---------------------|----------------|---------------------------------------------------------------------|
| High – Unacceptable | 5x3, 5x4, 5x5  | Can never be accepted – treatments are required.                    |
|                     | 4x3, 4x4, 4x5, |                                                                     |
|                     | 3x4, 3x5       |                                                                     |
|                     | 2x5            |                                                                     |
| Medium – Tolerable  | 5x1, 5x2       | Treatments are required but risks can be accepted without treatment |
|                     | 4x2            | if the actions are not proportional to gained improvements.         |
|                     | 3x2, 3x3       |                                                                     |
|                     | 2x3, 2x4       |                                                                     |
|                     | 1x4, 1x5       |                                                                     |
| Low - Acceptable    | 4x1            | Treatments are not necessary. Usual precautions taken and           |
|                     | 3x1            | maintained. Should be monitored.                                    |
|                     | 2x1, 2x2       |                                                                     |
|                     | 1x1, 1x2, 1x3  |                                                                     |



## Current framework at ESS



# ESS-0047810 ESS Guideline for Instrument Hazard Analysis



The purpose of this document is to explain the use of the "Template for Instrument Hazards Analysis" [7], illustrate the scope of the analysis and the criteria used.

The guideline and the template are designed to assist in documenting, tracking and communicating hazards connected to the ESS neutron scattering instruments in accordance with the ESS Procedure for Risk Management [1].

This guideline and the template do not provide a hazard analysis but constitute an aid for performing it.

Different engineering disciplines provide specific methodologies of the evaluation of risks and different grading, note that these may as well be applicable (as example EN-ISO 13489 or IEC 61508).



## ESS-0047810 ESS Guideline for Instrument Hazard Analysis

#### Scope:

The scope of the hazard analysis is the neutron instrument and its subsystems as identified in the ESS Generic Instrument PBS Number Designation [5]

#### **Excluded hazard categories:**

**Radiological hazards**: Identification and Mitigation of the radiological hazards are described in separate documents (see inside the document)

**Fire and explosion hazards:** These are addressed by Fire & Explosion Safety Program [ESS-0004722]. Not all fire and explosion hazards are identified, but most hazards are covered for in the program.

Hazards related to removable experimental setups (sample environment equipment) and samples, these are addressed by:

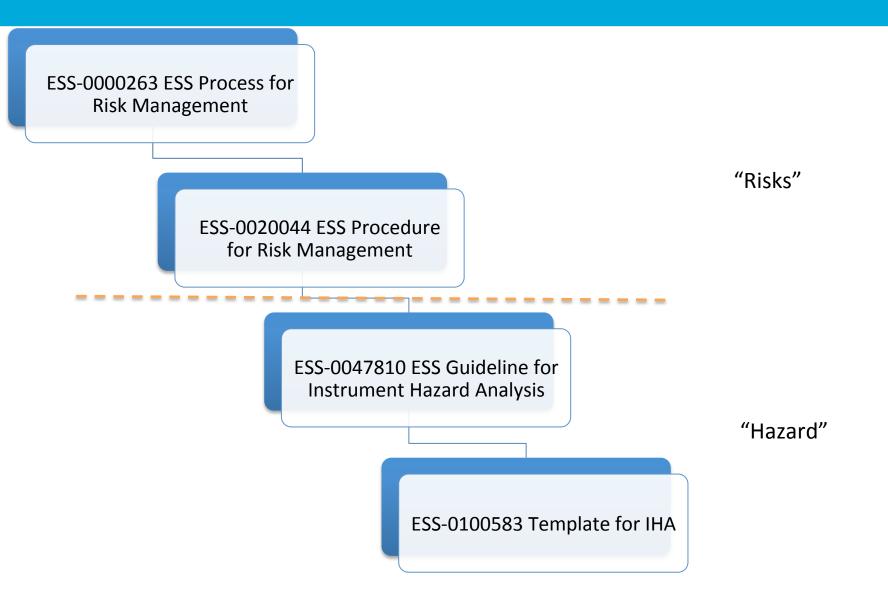
ESS-0024109 ESS Sample Management Procedure

ESS-0024107 ESS Experiment Safety Review Procedure

ESS-0024112 ESS Sample handling Procedure



## ESS-0047810 ESS Guideline for Instrument Hazard Analysis


Modes of operation (NSS Sub modes: NSS zoning document - part I (safety) ESS-0051603)

**Instrument Operation:** Having excluded radiological hazards from the scope of this analysis, the distinction between **beam on** and **beam off** can be ignored since the same hazards are present.

**Instrument Construction/Maintenance:** All these modes are characterized by additional hazards and total or partial removal of the hazards treatments that are typically available in the "operation mode".



## Current framework at ESS







### Input

| Major and minor system designations of the instrument in agreement with the project breakdown structure. | Identify the system and subsystem that contain the hazard. The systems are identified in the Instrument breakdown. |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Hazard category                                                                                          | Mechanical, Chemical, Biological,<br>Human behaviour, Electromagnetic,<br>Ergonomic, Temperature,                  |
| Source of hazard                                                                                         | Description the source of hazard                                                                                   |
| Accident description                                                                                     | Description of accident, in terms of event, cause and impact                                                       |
| Accident likelihood and consequence assessment                                                           | Grade the likelihood and consequence according to the scale defined in [1] for each mode of operation              |

## Workflow



### Output

| L.O.R (Level of risk) | Is the combination of likelihood and consequence, the risk level is defined according to the ESS limits [1] three levels are possible: |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                       | Acceptable(Green),<br>Tolerable(Yellow),<br>Unacceptable(Red)                                                                          |

#### Hazard treatment

| Hazard treatment category    | Describe the nature of the mitigation within the possible options: Eliminate, Mitigate, Transfer, Observe. |
|------------------------------|------------------------------------------------------------------------------------------------------------|
| Hazard treatment description | Description of the mitigation to be implemented                                                            |
| Hazard owner                 | Responsible for treatment and monitoring of the hazard                                                     |



# Questions?

