

The Bunker : Neutronic Shielding and Activation

Stuart Ansell Valentina Santoro Douglas Di Julio Günter Muhrer

European Spallation Source, Lund, Sweden.

December 5, 2017

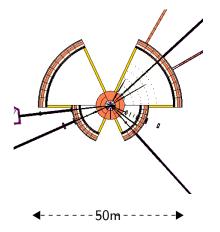
The Wall is going to be made from Steel and Polyethene

Considerations:

- Polyethylene became the primary candidate material due to roof limits on lower AND uppper surfaced
- 2 Polyethylene is non-structural unlike concrete
- 3 The wall needs more-multi steel layers to distribute the load evenly
- 4 Lead active steel shield considered an engineering liability
- 5 The upstream of the wall needs to interface with a intercollated instrument join (a single piece for simplicity)

The Roof needed to be made thinner

Considerations:

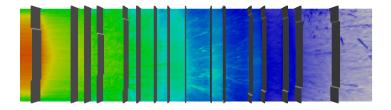

- Polyethylene became the primary candidate material due to the sprinkler system
- 2 The roof is reduced in top height [Crane hook height]
- **3** The roof cannot be lowered [Chopper housing] (170cm)

Full detailed engineering **MUST** be included

- Gaps, earthquake and pillar/support beams included on sector by sector basis
- 2 Vertical mis-match approximated by density reduction and increase of height by 5cm (3%)

Bunker Concept

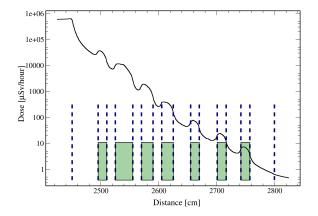
- Bunker contains >90 choppers/ >140 flanges
- Current MCNP model is 20,000 bunker components
- Essential that model input is prepared by computer code, and results are processed by computer code.



Considerations:

- **1** For the wall a 8x10cm² monolith opening is used
- 2 For the roof a simple focused beamline guide is used
 - 78% scattering is achieved (wall+guide) [E>1eV above]
 - Buildup is greater than a blocking scatter because as only half the neutron can exit the blocking source
- 3 Materials are HDPE / mid-Carbon mild Steel
- 4 Dose integrations done on average of highest $1m^2$ zone

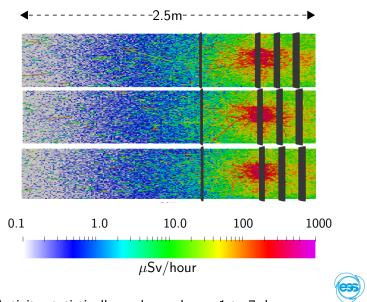
Dose through Poly Wall


0.1 1.0 10.0 100 1000 1e4 1e5 1e6 1e7 1e8 $\mu Sv/hour$

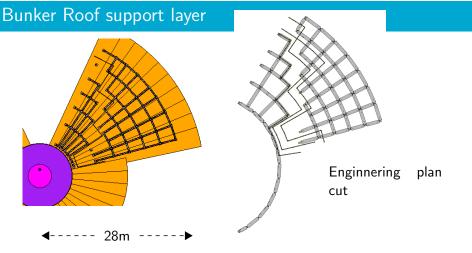
- Wall has no lead
- Thick initial poly layer to avoid activation of primary steel layer

EUROPEAN SPALLATION

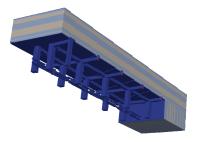
SOURCE ∢ ≣ →


Dose through Poly Wall

Steel shows the neutron dispersion effect



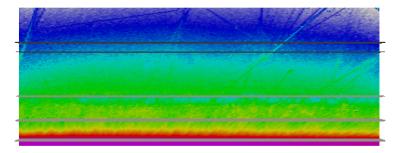
Wall Activation: Gamma flux after 1/3/7 days cooldown


ъ

Activity statistically unchanged over 1 to 7 days.

- Roof is now modeled with engineering gaps
- Clearance gaps extend though complete layers
- Represent 12% of the total roof volume [current CombLayer model]

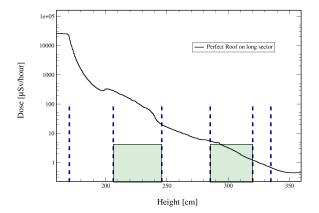
CombLayer Model of bunker



- Bunker roof supports models in full 3D
- 10cm cut into roof and 20cm underhang
- Filled with Poly -(modeled at 1/2 density)

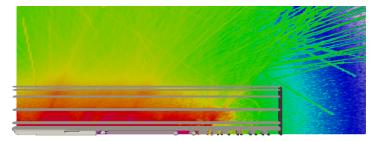
◄----- 14m -----►

Dose through Poly Roof - Perfect Roof

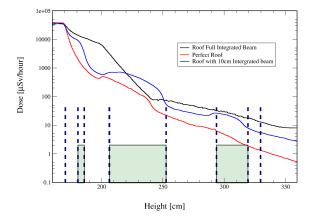


0.1 1.0 10.0 100 1000 1e4 4.3e4 $\mu Sv/hour$

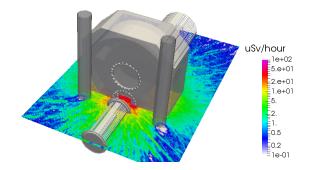
Poly layers and steel to get 1.6m distance



Dose through Perfect Poly Roof

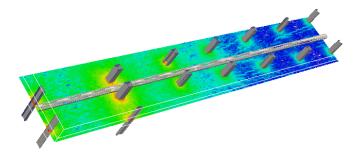

Dose through CATIA Roof - With 10cm level support

- Beamline : LOKI on short Modified to have straight 8x10cm² opening in monolith
- Cut through roof over support beam


Dose through Poly Roof - with lower level support

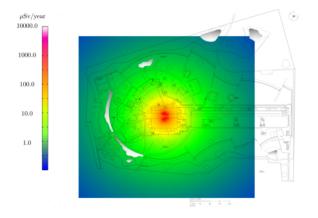
- Gap Steaming will produce local hot-spots
- Roof structure changed between Perfect/Integrated/10cm source

≣⊅


Activation in T0 Chopper

T0-Chopper 7 day: Activation from: Tungsten hammer / Inconnel (80A) rotor / Steel body

Activation of Pillars round a beamline


uSv/hour

1.000e-01 0.5 1 2 5 10 20 50 100 200 500 2.000e+03

Pillars 1 day: After 10 years at 5MW.

Skyshine Contribution to Environment

- High energy neutron field transported by block band air contribution
- Site boundary contribution just respected for 16 instruments sector

- Bunker is ok with supervised zone over the top
- No requirement for high B4C in Polyethelene [can use 0.5% which is fire-retardent grade]

