Radiation Safety at J-PARC at NSRI, JAEA

J-PARC Center Safety Division, (Deputy Radiation Protection Supervisor) /High Energy Accelerator Research Organization (KEK) H. Yamazaki

Outline of this talk

- What is J-PARC?
 - Safety management system
- Accelerator facilities in laboratory of nuclear facilities
- Zoning and access control to controlled areas
- Confinement of airborne activity
- Radiation monitoring system
 - Threshold determination of warning and alarming of monitors

Japan Proton Accelerator Research Complex (J-PARC)

Jointly operated by JAEA and KEK

- 3 accelerators
 - 400 MeV LINAC
 - 3 GeV RCS
 - 50 GeV MR (30 GeV operation)
- 3 user facilities
 - Materials and Life Science Experimental Facility (MLF)
 - Hadron Experimental Facility (HD)
 - Neutrino Experimental Facility (NU)

Safety Management System in J-PARC

Facility/Division is responsible for the safety of each Facility/division

J-PARC in NSRI, JAEA

Location of J-PARC

- The boundary of J-PARC is same as that of NSRI(<u>N</u>uclear <u>S</u>cience <u>R</u>esearch <u>I</u>nstitute, JAEA).
- Nuclear safety agreement is concluded between the local government and NSRI. J-PARC must act in accordance with this agreement which defines the duty to report in troubles, etc.

Information Flow in Emergency

In emergency, J-PARC act under the NSRI, where J-PARC located in.

Zoning, access control

Requirement on Spatial Dose Rate

Criteria for Radiation Controlled Area

Radiation controlled areas are defined as the areas in which radiation levels may exceed the following specified levels:

- 1. Effective dose
 - : 1.3 mSv/3months
- Average concentration of radioactivity in the air
 > 1/10 DAC (Derived Air Concentration, legal limit value from inhalation of air with RI)
- 3. Surface contamination
 - : 4 Bq/cm² for γ , β emitters
 - : 0.4 Bq/cm² for α emitters

Classification of Controlled Area

2nd-Class Controlled Area

External Exposure only

1st-Class Controlled Area

External and Internal Exposure (Surface contamination, air activity or induced radio activity etc.)

Controlled Area with High Radiation Level

The areas with high radiation levels is classified into the following two types and access to the area is strictly controlled:

Restricted area

- a) spatial dose rate might exceed 25 $\mu Sv/h$
- b) average concentration of radioactivity in the air might exceed 1/10 DAC (Derived Air Concentration)
- c) surface contamination might exceed
 - $\frac{40 \text{ Bq/cm}^2}{4 \text{ Bq/cm}^2} \quad \text{for } \gamma, \beta \text{ emitters}$ $\frac{4 \text{ Bq/cm}^2}{4 \text{ for } \alpha \text{ emitters}}$

Forbidden area

spatial dose rate might exceed 100 mSv/h

Interlocked area (restricted or forbidden)

None can access while beam on

Radiation Controlled Area @ J-PARC

Zoning at MLF (Low Power Operation)

Materials and Life Science Experimental Facility --- the 1st floor ~ 2016 11 1

New Zoning Category

Japanese	English	Sign	
1種A	1st class A	1 種 A 1st class A	Access to this area is restricted because of high level radiation dose and/or contamination.
1種B	1st class B	1種B 1st class B	Typical 1st class area (The area except 1st class A or 1st class C)
1種C	1st class C	1 種 C 1st class C	Low surface contamination area (In this area, it doesn't allowed to work with the risk of contamination; cutting, welding radioactive materials.) ₅

New Zoning Category

When you access to 1st class radiation controlled area, you should ...

1st class B

1st class A

Exchange shoes, and - put on yellow coat or

overall.

When you exit, you should check the contamination on your hands and feet with a hand foot cloth monitor.

New Zoning Category for High Power

ID Device for Access Control

 γ/β : Optically Stimulated

Luminescence element

ID: RFID transponder for access control

ID device is packed inside the personal dosimeter, not to forget to ware own PD

Access Control (Normal Working Area)

Entrance to controlled area

Exit

Hand

foot

cloth

Article

monitor

&

Access Control (High Radiation Area)

Alarm personal dosimeter and personal key (beam interlock)

Body surface and article contamination monitor (exit)

Personal Dosimetry

Administrative Dose Limit @J-PARC

For radiation workers

The Legal dose limit of Japan

- 100 mSV/5y and 50 mSv/y
- 5 mSv/3 months for women

Confinement of airborne contamination

Air Controlled Area of the Accelerator

- Unable to exhaust the accelerator tunnel during the beam operation.
 - Radioactive gas products with short half lives are produced, such as ¹⁵O(2.04m), ¹³N(9.97m), ¹¹C(20.4 m), ⁴¹Ar(1.8 h) etc.
 - In order to keep the regulation, cooling time is necessary before exhaust.
- The intermediate tunnels are constructed to prevent direct leakage of radioactive gas from the accelerator tunnels to environment.

Air Controlled Area of MLF Hall

Confinement of the mercury oriented RI

Radiation Monitoring System

Radiation Monitoring System

- Radiation Monitoring
 - Pulsed gamma (beam oriented)
 Ionization chamber
 - Continuous gamma (induced radioactivity oriented)
 Semi-conductor / Nal(TI)
 - Neutron

He-3 proportional chamber with polyethylene moderator

- High rate neutron

He-3 proportional chamber with polyethylene moderator, not only counts the number of signals, but also measures the charge integral

– High energy neutron

He-3 proportional chamber with polyethylene/lead moderator

Radiation Monitor

X/γ monitor (Area monitor)

Air filled Ionization Chamber

 → High sensitivity Count rate for background 20litters : 0.5-1cps 10litters : 0.05-0.1 cps
 Others

GM counter (0.5-1cps) Nal scintillator (2" 3-5cps, 3" 5-10cps)

Neutron monitor (Area monitor)

•1" or 2" He-3 Proportional counter

•0.95 MPa, 2500volts

•6.5cm thick polyethylene moderator

→A few MeV neutrons mainly

 → High sensitivity Count rate for background 1inch : 0.2-0.4cps 2inch : 0.5-1 cps

Radioactivity Monitoring System

- Airborne activity in exhaust
 - Radioactive gas

Ionization chamber or Plastic scintillator (J) / NaI(TI) with Pb shield (K) For H-3, silica aerogel traps and liquid scintillator

Radioactive dust

Semi-conductor (J) / GM or NaI(TI) (K) with filters Filters: A cellulose-glass fiber filter and a charcoal filter (for I, Hg etc.) replaced once a week and measured with Ge detector

- Activity in drain
 - Before drainage, radioactivity is measured with liquid scintillator (H-3, C-14) and Ge detector

Airborne radioactivity monitor

Radioactive dust and air in exhaust

To measure activity without pause, gas monitors are duplicated

Gas and Dust Monitors

Exhaust Gas Monitor

Dust Monitors

Tritium Collection Device

After trapping HTO, HT is oxidized with high temperature, Pt catalyst

Silica-gel bottles are replaced once a month. After 24 hours leaving in water, water activity is measured with Liq-scintillator

HTO and HT are separately collected in silica aero gel ³⁶

Setting Alarm for Radiation

Threshold Level for Radiation

- Interlock monitor at controlled area boundary
 - 60 min integration of radiation dose
 - If exceeds 0.5 uSv (buffer area criterion), beam acceleration is stopped automatically
- Online monitor: 2 level (warning & alarm) are applied
 - Warning : Normal operation x 2
 - Alarm : Warning x 5 (normal x 10)
- In principle, "warning" means starting investigation, "alarm" means stopping operation.
 But now, if radiation monitor starts to warn, accelerator operator stops beam operation immediately.

Radioactive Material Leak Incident in 2013

Hadoron hall improvements

Setting Alarm for Airborne Activity

Legal limit for Airborne Activity

- Room gas at working area
 - Threshold airborne activity concentration
 - Corresponds to 1 mSv exposure for 1 week (40 h) inhalation
- Exhaust gas
 - Threshold airborne activity concentration at site boundary (Concentration are averaged in 3 month)
 - Corresponds to 1 mSv exposure for 1 year (8760 h) inhalation

Nuclide	Form	Concentration Limit for room gas (Bq/cm ³)	Concentration Limit for exhaust (Bq/cm ³)
Ar-41	Submersion	1 x 10 ⁻¹	5 x 10 ⁻⁴

• At J-PARC, 20 uSv / 1 year at site boundary (1/50 legal limit)

Threshold Level for Airborne Activity

- Room gas monitor (independent from legal limit)
 - Warning: Normal operation x 2
 - Alarm : Warning x 5 (normal x 10)
- Exhaust gas monitor
 - Warning: J-PARC concentration limit
 - Continuous 3 month exhaust with same concentration exceed J-PARC limit (but still 1/50 legal limit)
 - Alarm : Warning x 10
- Exhaust dust monitor (Trapped on filters)
 - Warning: Normal operation x 2
 - Alarm : Warning x 5 (normal x 10)

Integrated Monitoring System

Monitoring and Alarm Display Image

Summary

- Accelerator facilities in laboratory of nuclear facilities
 In case of emergency, J-PARC must act as a part of NSRI
- Zoning and access control to controlled areas
 - Criteria in J-PARC are severer than legal limits in Japan
 - As increasing the beam power, zoning have been changed
- Confinement of airborne activity
 - Air is confined in the accelerator tunnel during operation
 - Air in the MLF is maintained by gradual negative pressure management
- Radiation monitoring system
 - Thresholds for alarm are determined in accordance with the center-wide policy