

Study of an Alternative Polishing Technique for SRF Cavities

$\frac{Oleksandr\ Hryhorenko\ ^1,\ C.\ Z.\ Antoine\ ^2,\ Marin\ Chabot\ ^1\ and}{David\ Longuevergne\ ^1}$

¹Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3, Université Paris-Sud, 91400 Orsay, France

²Départment des Accélérateurs, de Cryogénie et de Magnétisme, CEA/DRF/IRFU, 91191 Gif-sur-Yvette, France

Institut de Physique Nucléaire

Outline

Why surface polishing for SRF cavities?

Why an alternative polishing technique?

What we did so far?

Why surface polishing for SRF cavities? Why an alternative polishing technique?

What we did so far? What will be done? Institut de Physique Nucléaire

Outline

Why surface polishing for SRF cavities?

Why an alternative polishing technique?

What we did so far?

Institut de Physique Nucléaire

Why surface polishing for SRF cavities?

ORSAY

Institut de Physique Nucléaire

Outline

Why surface polishing for SRF cavities?

Why an alternative polishing technique?

What we did so far?

Institut de Physique Nucléaire

- Safety, recycling
- Possible reduction of the Niobium cavity processing cost
- Cure a surface where chemical polishing is inefficient (a-EP, b-CBP)
- Achieve better surface roughness (BCP \sim 1 um, EP \sim 100 nm, MP \sim 10 nm)
- Surface preparation of subststrates for alternative SRF material thin film deposition (Nb3Sn, multilayer ...)

Institut de Physique Nucléaire

- Safety, recycling
- Possible reduction of the Niobium cavity processing cost
- Cure a surface where chemical polishing is inefficient (a-EP, b-CBP)
- Achieve better surface roughness (BCP \sim 1 um, EP \sim 100 nm, MP \sim 10 nm)
- Surface preparation of subststrates for alternative SRF material thin film deposition (Nb3Sn, multilayer ...)

Institut de Physique Nucléaire

- Safety, recycling
- Possible reduction of the Niobium cavity processing cost
- Cure a surface where chemical polishing is inefficient (a-EP, b-CBP)
- Achieve better surface roughness (BCP \sim 1 um, EP \sim 100 nm, MP \sim 10 nm)
- Surface preparation of subststrates for alternative SRF material thin film deposition (Nb3Sn, multilayer ...)

Institut de Physique Nucléaire

- Safety, recycling
- Possible reduction of the Niobium cavity processing cost
- Cure a surface where chemical polishing is inefficient (a-EP, b-CBP)
- Achieve better surface roughness (BCP \sim 1 um, EP \sim 100 nm, MP \sim 10 nm)
- Surface preparation of subststrates for alternative SRF material thin film deposition (Nb3Sn, multilayer ...)

Institut de Physique Nucléaire

- Safety, recycling
- Possible reduction of the Niobium cavity processing cost
- Cure a surface where chemical polishing is inefficient (a-EP, b-CBP)
- Achieve better surface roughness (BCP \sim 1 um, EP \sim 100 nm, MP \sim 10 nm)
- Surface preparation of subststrates for alternative SRF material thin film deposition (Nb3Sn, multilayer ...)

Institut de Physique Nucléaire

What are the requirements?

• Remove damage layer from lamination 100-200 microns

- Remove damage layer from lamination 100-200 microns
- Achieve Ra < chemical roughness 100 nm

- Remove damage layer from lamination 100-200 microns
- Achieve Ra < chemical roughness 100 nm
- Preserve superconducting properties over few 100 nm (no damage layer, no pollution)

- Remove damage layer from lamination 100-200 microns
- Achieve Ra < chemical roughness 100 nm
- Preserve superconducting properties over few 100 nm (no damage layer, no pollution)
- Less hazardous than chemical treatment

- Remove damage layer from lamination 100-200 microns
- Achieve Ra < chemical roughness 100 nm
- Preserve superconducting properties over few 100 nm (no damage layer, no pollution)
- Less hazardous than chemical treatment
 - 1 Buffered chemical polishing (BCP)

- Remove damage layer from lamination 100-200 microns
- Achieve Ra < chemical roughness 100 nm
- Preserve superconducting properties over few 100 nm (no damage layer, no pollution)
- Less hazardous than chemical treatment
 - Buffered chemical polishing (BCP)
 - 2 Electropolishing (EP)

- Remove damage layer from lamination 100-200 microns
- Achieve Ra < chemical roughness 100 nm
- Preserve superconducting properties over few 100 nm (no damage layer, no pollution)
- Less hazardous than chemical treatment
 - 1 Buffered chemical polishing (BCP)
 - 2 Electropolishing (EP)
- Time of mechanical polishing comparable to chemical treatment: limit to 2 or 3 steps (instead of 4-5 steps)

What are the requirements?

- Remove damage layer from lamination 100-200 microns
- Achieve Ra < chemical roughness 100 nm
- Preserve superconducting properties over few 100 nm (no damage layer, no pollution)
- Less hazardous than chemical treatment
 - 1 Buffered chemical polishing (BCP)
 - 2 Electropolishing (EP)
- Time of mechanical polishing comparable to chemical treatment: limit to 2 or 3 steps (instead of 4-5 steps)

INSTITUT DE PHYSIQUE NUCI ÉAIRE

ORSAY

What are the requirements?

- Remove damage layer from lamination 100-200 microns
- Achieve Ra < chemical roughness 100 nm
- Preserve superconducting properties over few 100 nm (no damage layer, no pollution)
- Less hazardous than chemical treatment
 - 1 Buffered chemical polishing (BCP)
 - 2 Electropolishing (EP)
- Time of mechanical polishing comparable to chemical treatment: limit to 2 or 3 steps (instead of 4-5 steps)
 - abrasion step
 - 2 polishing step

INSTITUT DE PHYSIQUE NUCI ÉAIRE

ORSAY

Scenario 1: Polishing after forming

Standard process of surface preparation

Institut de Physique Nucléaire

Centrifugal Barrel Polishing (CBP): State of the art

Institut de Physique Nucléaire

Outline

Why surface polishing for SRF cavities?

Why an alternative polishing technique?

What we did so far?

Institut de Physique Nucléaire

CBP at IPNO

Centrifugal Barrel Polishing machine with oblique axis

UKJAI

12-06-2018

Institut de Physique Nucléaire

CBP at IPNO

Advantages

• Smoother surfaces compare to chemical treatment

Institut de Physique Nucléaire

CBP at IPNO

Advantages

- Smoother surfaces compare to chemical treatment
- Safety-wise process

Institut de Physique Nucléaire

CBP at IPNO

Disadvantages

Strong contamination of surface by abrasives particles

Institut de Physique Nucléaire

CBP at IPNO

Disadvantages

- Strong contamination of surface by abrasives particles
- Time of treatment is considerably longer

Institut de Physique Nucléaire

CBP at IPNO

Disadvantages

- Strong contamination of surface by abrasives particles
- Time of treatment is considerably longer
- CBP at JLAB,... is 96 hours, at IPNO is 150 hours (3 steps)

Institut de Physique Nucléaire

CBP at IPNO

Disadvantages

- Strong contamination of surface by abrasives particles
- Time of treatment is considerably longer
- CBP at JLAB,... is 96 hours, at IPNO is 150 hours (3 steps)
- Non-uniform removal rate (Egor Tamashevich PhD thesis at DESY)

Scenario 2: Polishing before forming

C.Z. Antoine proposed a new way of surface preparation for next generation of accelerator projects (ILC, FCC...)

Scenario 2: Polishing before forming

Lamination leaves a damage layer approximately 150 microns with a structure resistant to recrystallization

Institut de Physique Nucléaire

Second scenario: Metallographic flat polishing at IPNO

16 / 35

Institut de Physique Nucléaire

Mechanical polishing requirements

- Abrasion step
 - High etching rate
 - 2 Limited pollution
 - **3** Limited surface damages (scratch, artifacts...)
- Polishing step
 - Remove damages/pollution from previous step
 - 2 Decrease roughness to tens of nm

Institut de Physique Nucléaire

Study of abrasion step: diamonds as abrasives

Oleksandr Hryhorenko

12-06-2018

SLHiPP-8

Why surface polishing for SRF cavities? Why an alternative polishing technique? What will be dear?

Institut de Physique Nucléaire

Study of abrasion step: diamonds as abrasives

Non-Fixed abrasives

Oleksandr Hryhorenko

12-06-2018

SLHiPP-8

19 / 35

Etching rate and average surface roughness Sa

Institut de Physique Nucléaire

Study of polishing step: colloidal silica

Oleksandr Hryhorenko

Institut de Physique Nucléaire

Study of polishing step: colloidal silica

12-06-2018

Institut de Physique Nucléaire

Final polishing recipe in 2 steps

How long to polish Niobium to mirror like finish?

Institut de Physique Nucléaire

Damaged layer study

Damaged layer study with BCP...

Oleksandr Hryhorenko

12-06-2018

Conclusion

- Hard abrasives could polish soft material
- Mirror-like finish surface (average surface roughness 20 nm compared to 100 nm achievable by baseline technique) was obtained
- Number of steps was optimized

Institut de Physique Nucléaire

Outline

Why surface polishing for SRF cavities?

Why an alternative polishing technique?

What we did so far?

- Characterize carefully surface pollution and damaged layer (SIMS, EBSD, Grazing X-Ray Diffraction)
- Characterize at cryogenic T and under RF (pill-box cavity)
- Apply optimized recipe to large sheets (LAMPLAN)
- Find a way to form a cavity from polished sheets
- Fabricate a real cavity (elliptical)

- Characterize carefully surface pollution and damaged layer (SIMS, EBSD, Grazing X-Ray Diffraction)
- Characterize at cryogenic T and under RF (pill-box cavity)
- Apply optimized recipe to large sheets (LAMPLAN)
- Find a way to form a cavity from polished sheets
- Fabricate a real cavity (elliptical)

- Characterize carefully surface pollution and damaged layer (SIMS, EBSD, Grazing X-Ray Diffraction)
- Characterize at cryogenic T and under RF (pill-box cavity)
- Apply optimized recipe to large sheets (LAMPLAN)
- Find a way to form a cavity from polished sheets
- Fabricate a real cavity (elliptical)

- Characterize carefully surface pollution and damaged layer (SIMS, EBSD, Grazing X-Ray Diffraction)
- Characterize at cryogenic T and under RF (pill-box cavity)
- Apply optimized recipe to large sheets (LAMPLAN)
- Find a way to form a cavity from polished sheets
- Fabricate a real cavity (elliptical)

- Characterize carefully surface pollution and damaged layer (SIMS, EBSD, Grazing X-Ray Diffraction)
- Characterize at cryogenic T and under RF (pill-box cavity)
- Apply optimized recipe to large sheets (LAMPLAN)
- Find a way to form a cavity from polished sheets
- Fabricate a real cavity (elliptical)

Institut de Physique Nucléaire

High friction area

NB, Average deformation ~30% Easily recovered w. 800 ° C, 2 h annealing

[courtesy : R. Crook et al, Black Laboratory]

C.Z. Antoine | PAGE 10

TTC Meeting March 2014

12-06-2018

Institut de Physique Nucléaire

Electrohydraulic forming

Oleksandr Hryhorenko

Institut de Physique Nucléaire

How is changed structure after final treatment?

12-06-2018

Institut de Physique Nucléaire

Back up slides: Laser confocal microscope

ORSAN

Oleksandr Hryhorenko

12-06-2018

Height difference informatio

olor + laser intensity

33 / 35

Institut de Physique Nucléaire

Back up slides: Secondary ion mass spectrometry

Beam:

Energy /current:
1 to 5 keV / up to
400nA
Gaz: Oxygen or Argon
Profilometry: 80
microns
Resolution: 2 nm

Modes:

•SIMS static: chemistry composition •SIMS dynamic: depth profile

Oleksandr Hryhorenko

12-06-2018

Institut de Physique Nucléaire

Back up slides: SIMS static

Institut de Physique Nucléaire

RF test: ECOMI

Oleksandr Hryhorenko

12-06-2018

Institut de Physique Nucléaire

X-Ray diffraction

Panalytical X'Pert Pro X-ray diffractometer

- Preffered orientation
- Sample microstructure
- Residual stress analysis
- Analysis of changes in the crystal structure (deformation)
- Topology of the surface
- Depth control diffraction
- (2° 650 nm, 10° 2 micron, 20° 2.5 um)

12-06-2018

